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Preface

Computational resources have developed to the level that, for the first time, it
is becoming possible to apply large-eddy simulation (LES) to turbulent flow
problems of realistic complexity. Many examples can be found in technology
and in a variety of natural flows. This puts issues related to assessing, assuring,
and predicting the quality of LES into the spotlight. Several LES studies
have been published in the past, demonstrating a high level of accuracy with
which turbulent flow predictions can be attained, without having to resort
to the excessive requirements on computational resources imposed by direct
numerical simulations (see, e.g., [1]). This is also corroborated in the current
volume, which contains the proceedings of the first QLES meeting on Quality
and Reliability of Large-Eddy Simulation, held October 22–24, 2007 in Leuven
(QLES07).

The setup and use of turbulent flow simulations requires a profound knowl-
edge of fluid mechanics, numerical techniques, and the application under con-
sideration. The susceptibility of large-eddy simulations to errors in modelling,
in numerics, and in the treatment of boundary conditions, can be quite large
due to nonlinear accumulation of different contributions over time, leading
to an intricate and unpredictable situation. A full understanding of the in-
teracting error dynamics in large-eddy simulations is still lacking. To ensure
the reliability of large-eddy simulations for a wide range of industrial users,
the development of clear standards for the evaluation, prediction, and con-
trol of simulation errors in LES is summoned. The workshop on Quality and
Reliability of Large-Eddy Simulations (QLES2007) provided one of the first
platforms specifically addressing these aspects of LES. Its main objective was
to address fundamental aspects of the LES-quality issue by bringing together
mathematicians, physicists, and engineers, thereby confronting entirely differ-
ent approaches to the subject, doing justice to the complexity of this field.
The problem of treating one flow problem correctly is easily an order of mag-
nitude more challenging than the feasibility problem of doing one simulation
at all. The latter illustrates the state-of-the-art in LES of a decade ago, while
the former represents a more timely challenge.
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One of the main difficulties arising in the evaluation of errors in large-
eddy simulation, is the nonlinear accumulation of different error sources. Most
notorious is the possible interaction between subgrid-scale modelling errors
and numerical errors [9, 33]. A problem which is not so well recognized, is the
fact that there is no consensus on the definition of errors among researchers.
Moreover, differing views exist on the role of the subgrid-scale model relative
to that of the numerics in LES. Obviously, such differences handicap the
exchange of ideas on accuracy and reliability of LES. These elements will be
addressed in some more detail next, to provide an introduction to the current
volume.

In early large-eddy simulations, subgrid-scale models were nothing more
than a numerical stabilization mechanism [29], regularizing the coarse-mesh
solution of the Navier–Stokes equations. Later (see, e.g. [18, 17]) a physical
interpretation was linked to the subgrid-scale model, based on the formal ap-
plication of a low-pass filter to the Navier–Stokes equations. In particular, at-
tention was given to an analysis of the exchange of energy between so-called re-
solved and unresolved scales, corresponding roughly to scales larger or smaller
than the width of the presumed spatial filter, respectively. In modern-day LES,
both approaches still exist, i.e., numerical stabilization of the Navier–Stokes
equations versus a physics-based subgrid-scale model.

Many examples exist of physics-based models, such as the Lilly–Sma-
gorinsky model [18], backscatter models [22], VMS-Smagorinsky models [12],
and several of their variants [28, 32, 25, 31, 13, 26]. Mathematically, these mod-
els are used to close the low-pass filtered Navier–Stokes equations. Hence, a
natural point of reference for the definition of errors are the low-pass filtered
results from either direct numerical simulations or experiments [34]. In such
a framework, it was realized early on that, apart from subgrid modelling is-
sues, also numerical discretization was central for the quality of LES [20]. In
Mansour’s approach [20], a spectral cut-off filter is considered, and spectral
discretization is used as a point of reference for the quality of a numerical dis-
cretization scheme. In this context, Ghosal [9] pointed out that discretization
and modelling errors are of the same order of magnitude, and further work
along these lines was presented in [4, 3]. In a different approach to numeri-
cal errors Mason [21] proposed to increase the ratio of the filter scale to the
grid size Δ/h. At high values of Δ/h, any consistent numerical discretization
will converge to a grid-independent solution. Using this framework to define
discretization and modelling error, Vreman, Geurts & Kuerten [33] showed a
strong interaction between both error sources when Δ = h. In this context,
it was also shown that Δ/h > 1 does not necessarily guarantee a reduction
in total errors [33, 7, 23]. From a computational-cost point of view, both
Δ/h > 1 and higher order numerics are expensive, and avoided in most large-
scale computations of realistic applications. In addition, recent research seems
to suggest that low-order schemes and Δ/h = 1 may be beneficial to the global
simulation error at coarse resolutions [24].
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In an alternative approach to LES one may introduce a direct regular-
ization of the Navier–Stokes equations. In this case a change is made to the
dynamical properties of the equations, such that they can be accurately solved
at a much coarser mesh than DNS. Such an alteration can be performed on
the level of the continuous equations, e.g., addressing the convective nonlin-
earity, as is done in Leray regularization [8, 16], in the NS-α model [5], or
in the ADM approach [30, 15]. Alternatively, it has been suggested that this
‘regularization’ may be absorbed into the discretization scheme; examples are
the spectral vanishing viscosity method [14], MILES [6], and several others
[11, 10]. In contrast to the classical subgrid-scale model approach described
above, in a numerical stabilization approach, no explicit distinction is made
between numerical errors and modelling errors. This is a cause of deep method-
ological disagreements among different LES practitioners – an element that
re-appears in several of the contributions.

We believe that the main challenge for LES today is not lying anymore in
the development of new modelling or regularization approaches. Aside from
the important, unresolved problem of LES and high-Re boundary layers, most
of these techniques produce very satisfactory results when used appropriately.
Rather, a main challenge is in the development of a transparent standard
which helps practitioners in the correct use of LES. A fully consistent theory
on errors in LES still requires a huge amount of work. While empirical quali-
tative comparisons with reference data have been used for decades to conclude
on possible improvements in the numerics and physical closures, a mathemat-
ically grounded quantitative error measure, like the one proposed by Hoffman,
is certainly needed. The definition of such an error measure is a tricky issue,
since it appears that in some flows the error can evolve in an counter-intuitive
way [33, 27]. A related issue is LES sensitivity: how sensitive is a given LES
result to computational setup parameters? A reliable simulation must be sta-
ble, in the sense that a small variation of the setup parameters should not
yield a dramatic change in the quality of the results. Here again, only very
few results are available, and advanced mathematical tools are required (e.g.
[19]).

For Reynolds-averaged Navier–Stokes simulations, which are nowadays
commonly used in industry, advice on best practise is well known, e.g., ER-
COFTAC’s Best practice guidelines [2]. Certainly, such an exercise would also
be extremely useful for LES. This motivated a concerted effort to arrive at
‘Best practice for LES’ as identified as a central target of the COST Action
‘LESAID’, that started in 2006. However, for LES more should be possible: not
only guidelines for good quality, but also a ‘first-principles’ framework may be
feasible, in which the quality of LES is guaranteed. It was this context which
motivated the organization of a dedicated workshop on quality and reliability
of LES. Different contributions were grouped into four sessions. This is also re-
flected in the current book, which is divided into four parts, i.e., (1) Numerical
and mathematical analysis of subgrid-scale-model and discretization errors,
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(2) Computational error-assessment, (3) Modelling and error-assessment of
near-wall flows, (4) Error assessment in complex applications.

For the organization we relied considerably on the members of the scien-
tific committee: N. A. Adams (Technische Universität München, Germany),
M. Baelmans (Katholieke Universiteit Leuven, Belgium), A. Boguslawski (Po-
litechnika Czestochowska, Poland), D. Carati (Université Libre de Bruxelles,
Belgium), E. Dick (Universiteit Gent, Belgium), D. Drikakis (Cranfield Uni-
versity, United Kingdom), A. G. Hutton (QinetiQ, United Kingdom), J.
Jiménez (Universidad Politecnica Madrid, Spain), M. V. Salvetti (Università
di Pisa, Italy), and G. S. Winckelmans (Université Catholique de Louvain,
Belgium). We gratefully acknowledge their help.

The workshop on quality and reliability of large-eddy simulations was sup-
ported financially by a number of institutions. On a European scale, support
was provided by COST Action P20 ‘LESAID’ (LES – Advanced Industrial De-
sign) and ERCOFTAC (European Research Community on Flow, Turbulence
and Combustion). At the Belgian level, financial support was provided by the
Research Foundation – Flanders (FWO – Vlaanderen), and by the research
council of the K.U.Leuven. This support was crucial to the organization of
this workshop and is gratefully acknowledged.

Leuven, Johan Meyers
January 2008 Bernard J. Geurts

Pierre Sagaut
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Abstract. This report presents the mathematical foundation of approximate de-
convolution LES models together with the model phenomenology downstream of
the theory. This mathematical foundation now begins to be complete for the in-
compressible Navier–Stokes equations. It is built upon averaging, deconvolving and
addressing closure so as to obtain the physically correct energy and helicity balances
in the LES model. We show how this is determined and how correct energy balance
implies correct prediction of turbulent statistics. Interestingly, the approach is sim-
ple and thus gives a road map to develop models for more complex turbulent flows.
We illustrate this herein for the case of MHD turbulence.

Keywords: Deconvolution, Energy cascade, Helicity, MHD

1 Introduction

Approximate deconvolution models (ADMs) for large eddy simulation (LES)
are systematic (rather than ad hoc). See, for example, [1, 2, 50, 52, 51, 53]
for the work of Stolz, Adams, Kleiser and coworkers and [18, 19, 20, 21]
for Geurts’ work. They can achieve high theoretical accuracy and shine in
practical tests; they contain few or no fitting/tuning parameters. The ADM
approach has thus proven itself to be very promising with fundamental reasons
for its effectiveness, which we discuss herein. The basic (and ill-posed) problem
of approximate de-convolution is: (Section 2)

given u ( + noise) find useful approximations D(ū) of u
that lead to accurate and stable LES models. (1)

∗ This work was partially supported by NSF Grant DMS 0508260

J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, 3
c© Springer Science+Business Media B.V. 2008
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Indeed, given an approximate deconvolution operator D with accuracy O(δα) :

φ = Dφ + O(δα) for smooth functions φ (2)

the closure problem can be solved approximately to accuracy O(δα) by

uu⇐ D(u)D(u) ( + O(δα) ).

With the above closure approximation inserted in the SFNSE and adding a
time relaxation term χ(w −D(w)) we obtain an ADM given by

wt +∇ · (D(w)D(w))− ν�w +∇q + χ(w −D(w)) = f(x) , and ∇ · w = 0.

The key to an ADMs physical fidelity and robust mathematical theory is
having the correct global energy balance. In Section 3 we show that provided
D and I − D are SPD, with the weighted norms (v, w)D := (DNv, w)L2(Ω)

and ‖w‖2D := (w,w)D, we have

1
2
[‖w(T )‖2D+δ2‖∇w(T )‖2D]+

∫ T

0

ν‖∇w‖2D+νδ2‖�w‖2D+χ(w−D(w), w)Ddt

=
1
2
[‖u0‖2D + δ2‖∇u0‖2D] +

∫ T

0

(f, w)D dt.

This energy equality is the key to both the rigorous theory (Section 3) and
turbulent phenomenology (Section 4). In fact, its derivation gives a roadmap
to development of both for LES models for coupled NS systems. For example,
ADM’s have been extended successfully to fully coupled MHD turbulence
(including the possibility of using different averaging radii for the different
physical effects) in [27, 25, 26]. For MHD turbulence, the full ADM LES
models derived conserve all appropriate integral invariants and predict Alfvén
waves with the correct wave speeds – critical effects of MHD turbulence.

A correct prediction of turbulent flow means getting the energy balance
and rotational structures correct. In the large, this means the ADMs energy
and helicity statistics, Ê(k) and Ĥ(k) (Section 4), are correct over the resolved
scales:

Ê(k)�αmodelε
2/3
modelk

−5/3, Ĥ(k)�Cmodelγmodelε
−1/3
modelk

−5/3, for k≤π
δ
. (3)

In the presence of boundaries the difficult problems of commutativity, near
wall modeling and filtering through a boundary still arise. These problems
have motivated reconsideration of the oldest ideas in fluid dynamics: using
simple regularizations of the NSE instead of complex models. We have shown
that deconvolution can produce dramatic improvement in NSE regularizations
as well. Three are presented in Section 5: the Leray deconvolution regulariza-
tion, the NS-alpha and the NS-omega regularizations.

Overall, strong stability + high accuracy leads to good things in LES mod-
els. We also believe that deconvolution ideas have strong independent value
and can be used to improve most (or all) LES models and NSE regularizations.
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2 Approximate Deconvolution

1. The van Cittert deconvolution operator. See [7], DN is a family of
inverses to G using N steps of fixed point iterations.

Algorithm 1 [van Cittert Algorithm]: choose u0 = u. For n = 0, 1, 2, ...,
..., N − 1 perform un+1 = un + {u−Gun}. Set DNu := uN .

A mathematical theory of the van Cittert deconvolution operator and LES
models is developing [1, 6, 15] and [30]. For example, it is known that if
G is SPD then DN : L2(Q)→ L2(Q) is a bounded operator.

2. The Accelerated van Cittert deconvolution operator. Relaxation
parameters can be included in Algorithm 1 at little additional computa-
tional cost.

Algorithm 2 [Accelerated van Cittert Algorithm]: Given relaxation pa-
rameters ωn, choose u0 = u. For n = 0, 1, 2, ..., N − 1 perform un+1 =
un + ωn{u−Gun}. Set Dω

Nu := uN .

Proposition 1. Let the averaging operator be the differential filter Gϕ :=
(−δ2�+ I)−1ϕ. If ωi > 0, for all i, then Dω

N : L2(Q)→ L2(Q) is SPD.

Proof. The proof follows from [[38], Lemma 3.2].

Optimal values of the relaxation parameters ωi, for i = 0, 1, 2, 3, 4 were
calculated in [38], Table 1. With these values,
DN and Dω

N lead to a very accurate solution of the
3. Tikhonov regularization deconvolution operator. Given u and 1 >

μ > 0, since G is SPD, an approximate solution to (1) can be calculated
as the unique minimizer in L2(Q) of the Tikhonov functional

Fμ(v) =
1
2
(Gv,v)− (u,v) +

μ

2
(v −Gv,v).

The resulting deconvolution operator is

Dμ = ((1− μ)G + μI)−1. (4)

The family of operators Dμ has the following properties, [49]

• for any μ > 0, Dμ is a bounded SPD operator,
• limμ→0 Dμϕ = ϕ for all ϕ ∈ L2(Q).

The transfer function of the Tikhonov deconvolution operator is D̂μ =
1+k2

1+μk2 and as μ→ 0, Dμ is very accurate.
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3 Theory of Approximate Deconvolution Models

In the absence of boundaries, the SFNSE is ∇ · u = 0 and

ut+∇ · (D(u)D(u))−ν�u+∇p+∇ · (uu−D(u)D(u))=f(x). (5)

An LES model results from dropping the residual stress uu−D(u)D(u). The
residual stress, uu−D(u)D(u), is directly related to the deconvolution error
u−D(u) since

uu−D(u)D(u) = [u−D(u)]u + D(u)[u−D(u)].

Thus, the more accurately the deconvolution problem can be solved, the more
accurately (on the large scales) the closure problem is solved.

3.1 The Zeroth Order Model

The zeroth order van Cittert operator is D = I or φ = φ + O(δ2):

uu⇐ u u + O(δ2)

and yields the zeroth order ADM:

wt +∇ · (w w)− ν�w +∇q = f(x), and ∇ · w = 0. (6)

All the key mathematical results for approximate deconvolution models were
first proven for the (inaccurate) zeroth order model and the proofs in the
general case were based on the ideas developed for it. We start with the most
important example.

Theorem 3. (from [28]) Consider (6) with L-periodic boundary conditions
and the initial condition w(x, 0) = u0(x). Let the averaging operator be the
differential filter: G = A−1, A = −δ2Δ + 1. Then, strong solutions to the
zeroth order model exist uniquely and satisfy the energy equality:

1
2
[
‖w(t)‖2 + δ2‖∇w(t)‖2

]
+
∫ t

0

[
ν‖∇w(t′)‖2 + νδ2‖�w(t′)‖2

]
dt′

=
1
2
‖u0‖2 +

∫ t

0

(f(t′), w(t′))dt′.
(7)

Proof. (Sketch) The key to the model, like the NSE, is to make the nonlinear
term vanish by an appropriate choice of test function. In the zeroth order
model’s case we observe

(∇·(w w), Aw)=(A−1∇·(w w), Aw)=(∇·(w w), w)=0.

Thus, the key to the model is taking the inner product of (6) with Aw. Since
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(∇q,Aw) = (q,∇ ·Aw) = (q,A∇ · w) = 0,

we have

(wt, Aw) + (∇ · (w w), Aw)− ν(�w,Aw) + (∇q,Aw) = (f,Aw). (8)

Integrating by parts each term gives

1
2
d

dt
[(w,w) + δ2(∇w,∇w)] + [ν(∇w,∇w) + δ2(�w,�w)] = (f(t), w).

Theorem 3 has many important consequences.

• Existence, uniqueness and regularity of strong solutions, [29].
• Correct prediction of turbulent flow statistics through the resolved scales,

[37].
• Convergence (modulo a subsequence) as the δj → 0 to a weak solution of

the Navier–Stokes equations, [29].
• Optimal estimates of the model error (‖uNSE − wLES‖) by the model’s

consistency error (or residual stress), [29].
• Exact conservation of a model energy and global existence for the Euler

ADM, see [29, 28].
• Results on model vortex structures, see [29, 41].

Boundaries include the issues of filtering through a boundary and finding
effective boundary conditions for (non-local) flow averages or near-wall laws.
In [42] both important problems were circumvented by a clean and computa-
tionally attractive formulation of discrete differential filters.

3.2 Energy Balance of General ADMs

The extension to the van Cittert family was accomplished by Dunca [14] and
Dunca and Epshteyn [15]. Beyond van Cittert deconvolution, current research,
[49], investigates general deconvolution models. Let D denote a general ap-
proximate deconvolution operator

‖D‖L(L2(Ω)→L2(Ω)) <∞ and D φ � φ in some useful sense.

The associated base approximate deconvolution is

wt +∇ · (Dw Dw)− ν�w +∇q = f(x) , and ∇ · w = 0. (9)

Like the N = 0 case, the consistency error/residual stress tensor of the base
ADM is

τ(u, u) = uu−D(u)D(u).

Finding the energy balance of the general model depends upon: given w,
construct an associated function Φ(w) with
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(∇ · (DwDw), Φ(w)) = · · · = (v · ∇v, v) = 0.

Taking Φ(w) = ADw we find (with v = D(w)) from (9)

(∇ · (DwDw), ADw) = (A−1∇ · (DwDw), ADw) = (∇ · (D(w)D(w)),D(w))
= (v · ∇v, v) = 0.

This gives the analog of the energy estimate (7) in Theorem 3 since

(wt, ADw)− ν(�w,ADw) = (f(x, t), ADw). (10)

This is a deconvolution weighted version of the same energy estimate as the
N = 0 case. If the operators involved commute and the operator D is SPD
then this just represents a weighting of the usual L2 norm and inner product.

We thus have the essential condition and reweightings

D is SPD and (u, v)D := (u,Dv), ‖u‖2D = (u, u)D.

Proposition 2. Let G be the differential filter G = A−1 where A = −δ2Δ +
1. Then, the van Cittert approximate deconvolution operator is symmetric
positive definite (and Δ,A, and D commute).

Proof. Both A−1 and (I − A−1) are SPD. For example, (I − A−1) is a SPD
since

(φ, (I −A−1)φ) = (letting ψ = A−1φ) = δ4‖�ψ‖2 + δ2‖∇ψ‖2 > 0

for φ �= 0. Eliminating the intermediate steps in Algorithm 1, DN is clearly
SPD since it is a sum of SPD operators:

DN =
N∑

n=0

(I −A−1)n.

Integrating by parts each term in the energy equation (10) gives

1
2
d

dt
[‖v‖2D + δ2‖∇v‖2D] + [ν‖∇v‖2D + νδ2‖�v‖2D] = (f(t), w)D.

The above clearly identifies the ADM energy and energy dissipation rate. The
ADM kinetic energy, conserved exactly if ν = f = 0, and energy disipation
rate are given by

EADM (w)=
1

2|Ω| [‖w‖
2
D+δ2‖∇w‖2D], εADM (w)=

ν

|Ω| ‖∇w‖
2
D+

νδ2

|Ω| ‖�w‖
2
D.

These are the essential ingredients (together with complementing mathemat-
ical technicalities) of the following result of Stanculescu [49].
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Theorem 4 (ADM Energy Equality). Suppose that �, A,D commute, D
is SPD. Then, a unique strong solution of the general ADM exists. Further,
the following energy equality holds

EADM (w)(t) +
∫ t

0

εADM (w)dt′ = EADM (w)(0) +
∫ t

0

1
|Ω| (f, w)dt′.

From the energy equality, mathematical and physical theories of the general
ADM follow.

• The Leray theory of the model: Existence, uniqueness and regularity
of strong solutions, [28, 29, 14, 15, 49, 6] and

wADM → uNSE , as δj → 0.

• High Accuracy: for the large scales. For D = DN

max
[0,T ]
‖u− w‖2 +

∫ T

0

ν‖∇(u− w)‖2dt′ ≤ C(u,Re)δ4N+4.

• Physical fidelity: correct prediction of turbulent flow statistics, i.e. (3)
holds, [35, 36, 32], see also Section 4.

4 ADM Phenomenology

In 1961 helicity’s inviscid invariance was discovered [44, 43]. Helicity is a rota-
tionally meaningful quantity that can be checked for accuracy in a simulation.
There is considerable evidence that both energy and helicity exhibit cascades
and the details of their respective cascades are intertwined, [3]. Recent theo-
retical studies, which have been experimentally confirmed [8], have suggested
a joint energy and helicity cascade through the inertial range of wave numbers

Ê(k) � CEε
2/3k−5/3, Ĥ(k) � CHγε−1/3k−5/3,

where k is wave number, ε the time averaged energy dissipation rate, γ the
time averaged helicity dissipation rate and CE , CH constants, [9, 13].

4.1 Energy Cascade of Approximate Deconvolution Models

The correctness of LES energy cascades of was studied by Muschinksy [45],
and later by Holm, Olson and Titi [16] for NS-α and [35, 36] for ADMs. If we
set χ = 0 and apply A to the ADM it becomes:

∂

∂t

[
w−δ2�w

]
+ DN (w) · ∇DN (w)− ν

[
�w−δ2�2w

]
+∇P = f .
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Since DN is spectrally equivalent to the identity (uniformly in k, δ, nonuni-
formly in N) the nonlinear interaction DN (w) · ∇DN (w) (like those in the
NSE) will pump energy from large scales to small scales. The viscous terms in
the above equation will damp energy at the small scales (more strongly than
in the NSE in fact). Lastly, when ν = 0, f ≡ 0 the model’s kinetic energy is
exactly conserved (Theorem 4).

Thus, the family of ADMs satisfies all the requirements for the existence
of a Richardson - like energy cascade for Emodel. Select the (time averaged)
variables with units (denoted [·]):

•Êmodel - ADM energy spectrum, [Emodel]= length3time−2,
• εmodel - energy dissipation rate, [εmodel(k)]= length2time−3 ,
• k - wave-number with [k] = length−1 and
• δ - averaging radius with [δ] = length .

Choosing primary dimensions mass, length and time, form 2 dimensionless
ratios, Π1 and Π2. Choosing ε and k for the repeating variables we obtain
Π1 = εa

modelk
bÊmodel and Π2 = εc

modelk
dδ for some a, b, c, d. Applying the

Π-theorem gives
Êmodel = ε

2/3
modelk

−5/3f(kδ).

Economy suggests that f(Π2) = αmodel, [36] and thus

Êmodel(k) = αmodelε
2/3
modelk

−5/3.

However, interesting conclusions result from the difference between E(w)(t)
and Emodel(w)(t). Parseval’s equality gives Êmodel(k) = (I + δ2k2)−1Ê(k) so

Ê(k) =
αmodelε

2/3
modelk

−5/3

1 + δ2k2
. (11)

Equation (11) gives two wave-number regions depending on which term in
the denominator is dominant: 1 or δ2k2. The transition point is the cutoff
wave-number k = π

δ . We thus have (Fig. 1)

Ê(k)�Cε
2
3
modelk

− 5
3 , for k ≤ π

δ
, Ê(k)�Cε

2
3
modelδ

−2k−
11
3 , for k≥ π

δ
.

Related studies have also established the following:

• Kraichnan’s dynamic argument. In [32] the dynamical argument of [24]
strongly supported f(Π2) ≡ constant.

• The microscale of ADMs. When χ = 0, ηmodel is, [36],

ηmodel � Re−
3
10L

2
5 δ

3
5 (N + 1)−

3
10 .

• The joint helicity-energy cascade. In [32], the model’s energy and helicity
cascade (3) was established.
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Fig. 1 Spectrum of kinetic energy of ADMs

• Time relaxation induces the desired micro-scale, ηmodel ≈ δ, [36].
• Other filters. With G = (−δ2Δ + 1)−1, scales begin to be truncated at

l = O(δ) by an enhanced decay of the energy and helicity of k−11/3. The
exponent −11/3 occurs because the filter decays as k−2. With a Gaussian
filter, ηmodel � δ.

5 Deconvolution Regularizations of the NSE

Three high order families of regularizations of the (unfiltered) Navier–Stokes
equations have recently been proposed and studied. They are the Leray-
deconvolution model [31, 34, 48],

vt + DNv · ∇v +∇q − νΔv = f, ∇ · v = 0, (12)

the NS-α-deconvolution model [46, 47],

vt −DNv × (∇× v) +∇q − νΔv = f, ∇ ·DNv = 0 (13)

and the NS−ω deconvolution model, [39, 33],

vt − v ×∇×DN (v) +∇q − νΔv = f and ∇ · v = 0.

All are high-order accurate O(δ2N+2). Also, (12) and (13) include for N = 0
the Leray-α [12, 40] and NS-α models [10, 11, 16, 17, 22] which both have
accuracy O(δ2).

5.1 The Leray-Deconvolution Regularization of the NSE

The consistency error of (12) is O(δ2N+2). Thus with the Leray deconvolution
model accuracy can be increased by cutting δ (and thus the mesh), or by
holding δ constant and increasing the order of approximate deconvolution N .
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Theorem 5. (from [31]) The problem (12) admits a unique solution v ∈
L∞(0, T ;H1) ∩ L2(0, T ;H2), q ∈ L2(0, T, L2), vt ∈ L2(0, T ;H−1) satisfying

‖v(t)‖2 + 2ν
∫ t

0

‖∇v‖2 dt′ = ‖v0‖2 +
∫ t

0

(f, v) dt′. (14)

For smooth solutions of the NSE the error satisfies

‖u− v‖2 + ν

∫ T

0

‖∇(u− v)‖2dt ≤ C(u,Re)δ2N+2.

The filter-and-deconvolve process can be efficiently treated (as in Baker [4]).
By time-extrapolating the first term of the nonlinearity, O(Δt2) accuracy is
maintained and only known terms are filtered and deconvolved, [34]. The
CNLE (Crank-Nicolson with Linear Extrapolation) method for computing
solutions to the Leray-deconvolution method was studied in [34]. Discrete
filtering (A−1

h φ := φ
h
) and discrete deconvolution (Dh

N ) in a finite element
space Xh, are defined by

δ2(∇φh
,∇χ) + (φ

h
, χ) = (φ, χ) ∀χ ∈ Xh, Dh

Nφ :=
N∑

n=0

(I −A−1
h )nφ. (15)

It is proven in [34] that the consistency of discretely applying approximate
deconvolution to a discretely filtered variable is of high order.

Lemma 1. (from [34]) If Xh contains degree k piecewise polynomials,

‖φ−Dh
Nφ

h‖ ≤ C(N,φ)(δhk + hk+1 + δ2N+2). (16)

This lemma is the key in [34] to showing solutions of trapezoidal finite element
schemes for (12) converge at the rate of O(Δt2 + hk + h2N+2). Choosing N
to balance the exponents allows for optimal convergence. For N = 0 (i.e.
Leray-α), optimal convergence cannot be obtained if k ≥ 3.

In [34], two and three dimensional numerical examples of trapezoidal FEM
for (12) are given. The 3d computations were done in Matlab using Taylor-
Hood tetrahedral elements on an h = 1/32 mesh. The 3d tests compared
errors and helicity for the scheme for the NSE and Leray-deconvolution for
N = 0, 1, 2.

Figure 2 shows error versus time for CNLE finite elements schemes for
the NSE, and Leray-deconvolution N = 0, 1, 2 on the periodic unit box. The
Reynolds number was Re=5000, and f and u0 were computed from the known
solution u = 〈cos(2π(z+t)), sin(2π(z+t)), sin(2π(x+y+t))〉. From the figure,
errors in the Leray-deconvolution models increases at a much slower rate than
for the NSE. For the L2 error, a dramatic decrease in error can be seen in the
N = 1, 2 models vs. N = 0 and NSE.

Figure 3 shows, for the CNLE finite element computations for the NSE
and Leray-deconvolution N = 0, 1, 2, energy and helicity versus time for a flow
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Fig. 2 L2 and H1 error vs time for CNLE FEM, h = 1/32, Re=5000, and u =
〈cos(2π(z + t)), sin(2π(z + t)), sin(2π(x + y + t))〉
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Fig. 3 Energy and helicity vs. time of an extrapolated Crank-Nicholson scheme
simulation of a flow with initial condition u0 = 〈cos(2πz), sin(2πz), sin(2πx + y)〉,
ν = f = 0, and h = 1/32 for the NSE and LerayDC N = 0, 1, 2. Energy is conserved
by all the schemes, but LerayDC schemes approximately conserves helicity while the
NSE scheme does not
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Fig. 4 DNS of Navier–Stokes with 45,138 degrees of freedom

Fig. 5 Leray-α (N = 0 Leray-deconvolution) on 5,845 d.o.f.

with initial condition u0 = 〈cos(2πz), sin(2πz), sin(2π(x + y))〉, no viscosity
or external force (ν = f = 0), and an h = 1/32 uniform discretization of the
periodic unit cube. In the continuous case, all of these models conserve both
energy and helicity under these conditions. For all four models simulations,
energy is exactly conserved. In the helicity graph, the Leray-deconvolution
models approximately conserve helicity while the NSE simulation does not.

Two dimensional numerical examples are also given in [34] for two dimen-
sional transitional flow (ν = 1/600) over a forward and backward facing step.
Figure 4 shows the true solution of this problem, run for the Navier–Stokes
equations on a very fine mesh (45, 138 degrees of freedom), and show the so-
lution at time T = 40 seconds. Here it is seen that eddies form behind the
step, shed, and new eddies form. Since the purpose of turbulence modeling is
to use them with many less d.o.f. than for a DNS, we run the same problem
on a much coarser mesh (only 5, 845 d.o.f.) for the Leray-α model and for the
Leray-deconvolution N = 2 models. Figure 5 shows the results for the Leray-α
model: an eddy forms behind the step and stretches out. The Leray−α model
is too dissipative. However, for the Leray-deconvolution N = 2 model shown
in Fig. 6 on that same mesh, eddies are seen to break off and new ones form
behind the step.

The analysis and computations of [31, 34] make a strong case that Leray-
deconvolution preserves solution properties, adds accuracy, decreases error
and increases physical fidelity.
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Fig. 6 Leray-deconvolution N = 2 simulation on 5,845 degree of freedom mesh

5.2 The NS-α-Deconvolution Regularization of the NSE

The NS-α-deconvolution model [46] is a helicity-corrected Leray-deconvolution
model. One drawback of Leray-deconvolution is an inaccurate treatment of
three dimensional rotation. Helicity is as important as energy for understand-
ing three dimensional turbulent flow [43, 13, 9]. However, the nonlinear effects
of the Leray-deconvolution model non-physically create and dissipate helicity
[48]. By adding a helicity-correcting term to Leray-deconvolution (see [46]), a
model which treats helicity in a physically accurate manner is recovered: the
NS-α-deconvolution model.

Since NS-α-deconvolution has only very recently been proposed, the math-
ematical theory behind this model has not yet been developed as far as that of
the Leray-deconvolution model (but this work is currently underway!). What
has been proven is that the NS-α-deconvolution model conserves both a model
energy and helicity, and is nonlinearly stable [46]. Define the natural energy
and energy dissipation norms of NS-α-deconvolution:

‖v‖2E(NSαD) :=
1
|Ω| (v,DNv) =

1
2|Ω|

[
‖v‖2D + δ2‖∇v‖2D

]

‖v‖2ε(NSαD) :=
ν

|Ω| (∇v,∇DNv) =
ν

|Ω|
[
‖∇v‖2D + δ2‖Δv‖2D

]
.

Theorem 6. (From [46]) Solutions of NS-α-deconvolution on a periodic do-
main in three dimensions, for ν = f = 0, conserve both energy and helicity:
For T > 0,

‖v(T )‖E(NSαD) = ‖v(0)‖E(NSαD), (v(T ),∇× v(T )) = (v(0),∇× v(0)).

While if ν > 0 and f �= 0

‖v(T )‖2E(NSαD)+ν

∫ T

0

‖∇v‖2ε(NSαD)dt≤‖v0‖2E(NSαD)+C(N)ν−1‖f‖2L2(H−1).

In [47], a trapezoidal FEM for NS-α that preserves both energy and he-
licity is analyzed. It extends to a similar scheme for NS-α-deconvolution. The
convergence analysis for the generalized scheme shows its velocity converges
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to a NSE solution at the rate of O(Δt2+hk +h2N+2), where (Pk, Pk−1), k ≥ 2
elements are used. For the higher order elements, using N = 0 will give sub-
optimal convergence rates. However, if N ≥ 1

2k− 1 optimal convergence rates
can be obtained. Numerical results to test this theory are currently under-
way, as are experiments to compare the NS-α scheme (N = 0) to the NS-α-
deconvolution (N ≥ 1) scheme.

6 Complex Fluids: the Case of MHD Turbulence

Magnetically conducting fluids arise in important applications including
plasma physics, geophysics and astronomy. The difficulties of accurately mod-
eling and simulating turbulent flows are magnified many times over in the
MHD case. They are evinced by the more complex dynamics of the flow due
to the coupling of Navier–Stokes and Maxwell equations via the Lorentz force
and Ohm’s law. The MHD equations are central to plasma confinement, con-
trolled thermonuclear fusion, liquid-metal cooling of nuclear reactors, electro-
magnetic casting of metals, MHD sea water propulsion.

Let u(t, x), p(t, x), B(t, x) be the velocity, pressure, and the magnetic field
of the flow, driven by the velocity body force f and magnetic field force curl g:

ut +∇ · (uu)− 1
Re

Δu +
S

2
∇(B2)− S∇ · (BB) +∇p = f,

Bt +
1

Rem
∇× (∇× B) +∇× (B × u) = ∇× g,

∇ · u = 0,∇ ·B = 0.

(17)

Here Re, Rem, and S are the Reynolds, the magnetic Reynolds and the cou-
pling number, respectively, see , e.g. [23].

If aδ1 , aδ2 denote two local, spacing averaging operators with different
lengthscales for different physical processes that commute with the differen-
tiation, then averaging (17) gives the following non-closed equations for uδ1 ,

B
δ2
, pδ1 in (0, T )×Ω:

uδ1
t +∇·(uuδ1)− 1

Re
Δuδ1−S∇ · (BB

δ1)+∇
(S

2
B2

δ1 +pδ1

)
=f

δ1
,

B
δ2

t +
1

Rem
∇× (∇× B

δ2)+∇ · (Bu
δ2)−∇ · (uBδ2) = ∇× gδ2 ,

∇ · uδ2 = 0, ∇ ·Bδ2 = 0.

(18)

The usual closure problem which we study here arises because uuT
δ1 �= uδ1 uδ1 ,

BBT
δ1 �= B

δ1
B

δ1 , uBT
δ2 �= uδ1 BT

δ2
. We study (17) hence (18) subject to

periodic boundary conditions. The closure problem is to replace the tensors
uuT

δ1
, BBT

δ1
, uBT

δ2
with tensors T (uδ1 , uδ1), T (B

δ2
, B

δ2), T (uδ1 , B
δ2),

respectively, depending only on uδ1 , B
δ2 and not u,B.
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Call w, q,W the approximations to uδ1 , pδ1 , B
δ2 , the zeroth order MHD

ADM is given by:

wt +∇ · (wwδ1)− 1
Re

Δ w − S∇ · (W W
δ1) +∇q = f

δ1
,

WT +
1

Rem
∇× (∇× W ) +∇ · (Ww

δ2)−∇ · (wW δ2) = ∇× gδ2 ,

∇ · w = 0, ∇ ·W = 0.

(19)

The model considered can be developed for quite general averaging oper-
ators, see e.g. [1]. The choice of averaging operator in (19) is the differential
filter (−δ2Δ+ I)−1. (We use different lengthscales for the Navier–Stokes and
Maxwell equations).

The main theoretical result in [27] states that a unique strong solution of
the MHD LES model (19) exists globally in time, for large data and general
Re,Rem > 0 and that it satisfies an energy equality.

Theorem 7. Let δ1, δ2 > 0 be fixed. For any (u0
δ1, B0

δ2) ∈ V and (f
δ1
, curl gδ2)

∈ L2(0, T ;H), there exists a unique strong solution (w,W ) to (19) in
L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) and wt,Wt ∈ L2((0, T )×Ω). Moreover,

E(t) +
∫ t

0

ε(τ)dτ = E(0) +
∫ t

0

P(τ)dτ,

where

E(t)=
δ1

2

2
‖∇w(t, ·)‖20 +

1
2
‖w(t, ·)‖20 +

δ2
2S

2
‖∇W (t, ·)‖20 +

S

2
‖W (t, ·)‖20,

ε(t)=
δ1

2

Re
‖Δw(t, ·)‖20+

1
Re
‖∇w(t, ·)‖20+

δ2
2S

Rem
‖ΔW (t, ·)‖20+

S

Rem
‖∇W (t, ·)‖20,

P(t)=(f(t), w(t)) + S(∇× g(t),W (t)).

In the proof we use the semigroup approach of [5], based on the machinery of
nonlinear differential equations of accretive type in Banach spaces. The other
results derived for the model (19) in [27] concern: (i) regularity of the solution,
(ii) error estimates for the model, (iii) conservation laws and (iv) the model
predicts Alfvén waves correctly.
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Adaptive Turbulence Computation Based on
Weak Solutions and Weak Uniqueness
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Abstract. We review our work on adaptivity and error control for turbulent flow,
and we present recent developments on turbulent boundary layer flow. The compu-
tational method G2 is not based on filtering of the Navier-Stokes (NS) equations,
and thus no Reynolds (subgrid) stresses are introduced. Instead the mathematical
basis is ε-weak solutions to the NS equations and weak uniqueness of such ε-weak
solutions. Based on this mathematical framework we construct adaptive finite ele-
ment methods for the computation of (mean value) output in turbulent flow, where
the mesh is refined with respect to a posteriori estimates of the error in the output
of interest. The a posteriori error estimates are based on stability information from
the numerical solution of an associated dual (adjoint) problem with data given by
the output of interest. To model turbulent boundary layer separation we use a skin
friction boundary layer model, and we also consider the case of zero skin friction
corresponding to solving the inviscid Euler equations with slip boundary conditions,
which we refer to as an EG2 method. The results of EG2 computations suggest a new
resolution to the d’Alembert paradox, and a new scenario for turbulent boundary
layer separation.

Keywords: Turbulent flow, Adaptive mesh refinement, A posteriori error estima-
tion, Duality, Finite element method, Turbulent boundary layer separation

1 Introduction

In this paper we review our work on adaptive turbulence computation, and
report on recent work on turbulent boundary layer separation.

For efficiency in high Reynolds number flow computations, a locally vary-
ing degree of resolution is necessary, with relatively low resolution of laminar,
smooth flow and high resolution of turbulent wakes, shocks and boundary
layers. Phenomena demanding high resolution is usually very localized and
thus local mesh refinement can drastically reduce the number of degrees of
freedom in a computation, compared to using a uniform mesh. The precise
location of such phenomena is not known a priori, since separation, transi-
tion and shocks are part of the solution, and thus adaptive mesh refinement
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based on a posteriori error estimation is needed. To asses the quality of a
computed solution we also need a posteriori error estimates, since a priori
error estimation necessarily is crude without feedback from the computation.

A framework for adaptivity and a posteriori error estimation for Galerkin
finite element methods (FEM) was developed in the 1990s, primarily by the
groups of Johnson at Chalmers [16], Rannacher at Heidelberg University [3],
and Süli at Oxford University [20]. A posteriori error estimates for an output
of interest was derived in terms of a computable residual and the solution of
a linearized dual (or adjoint) problem. In CFD, applications of adaptive finite
element methods based on this framework have been increasingly advanced,
with e.g. computations of laminar incompressible flow in [2, 19, 23, 4], and
laminar compressible flow in [39, 22, 1, 8, 6, 7, 50]. To extend this framework
also to turbulent flow a number of major challenges had to be addressed, in-
cluding the mathematical problem of existence and uniqueness of solutions to
the underlying Navier-Stokes (NS) equations, and the computational problem
of high computational cost and insufficient resolution.

The extension of the framework for a posteriori error estimation to turbu-
lent flow was initially [24, 25] approached in the setting of large eddy simula-
tion (LES), where the error was estimated with respect to the filtered solution,
resulting in an error estimate consisting of a FEM discretization error and a
subgrid modeling error, where the subgrid modeling error had to be estimated
with respect to an a priori model of the true Reynolds stresses (using e.g. a
scale similarity model, see [49]). Although providing a framework for a poste-
riori error estimation for LES, the main drawback of the approach in [25] is
the presence of the true Reynolds stresses in the modeling error estimate. For
other work on error estimation in LES, see e.g. [49, 18, 15, 13, 14, 52].

To characterize turbulent flow mathematically we may identify two main
approaches: (i) methods based on averaging (filtering) of the NS equations in
the spirit of Reynolds [47] and Kolmogorov [41, 42, 40], such as RANS and
LES [49], introducing Reynolds (subgrid) stresses that need to be modelled
in turbulence (subgrid) models, and (ii) methods from functional analysis
based on weak solutions of NS equations proven to exist by Leray [43] in
1934, without any explicit averaging of the equations apart from the weak
form of the equations, and without introducing any Reynolds stresses. The
weak form of the equations, with the equations multiplied by a set of smooth
test functions and integrated, is also the basis for FEM. Even though Leray
himself referred to his weak solutions as turbulent solutions, the study of
weak solutions to characterize turbulent flow is very limited. One may get the
impression that the result of existence of a weak solution is mainly seen as
just a step towards proving existence of also a classical solution, formulated
as one of the Clay $1 million Prize problems [9], although progress in this
direction has been very slow since the proof of Leray.

For high Reynolds numbers direct numerical simulation (DNS) of NS equa-
tions is not possible due to the computational cost, and instead comput-
ing underresolved approximate solutions is the only option. In the averaging
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approach (i) such numerical approximations, using a suitable discretization
method, are interpreted as mean values of underlying DNS solutions, whereas
in (ii) one may interpret FEM approximations as approximate weak solutions
to NS equations [30, 32].

A key issue for underresolved turbulent flow is (turbulent) viscous dissi-
pation; in most discretization methods of NS equations numerical viscosity is
introduced, and in (i) viscosity is also introduced by the turbulence model.
In assessing the quality of a numerical approximation using the averaging
framework (i) one is then typically faced with the following challenges; to sep-
arately estimate the numerical error and the modeling error, which involve
estimating the true Reynolds stresses, and to distinguish between numerical
and modeling viscosity.

A main difference between (i) and (ii) is also that in (i) the underlying
NS equations are modified (by averaging), but in (ii) the equations are the
same but the degree of satisfaction of the equations is relaxed from pointwise
satisfaction to only satisfaction in mean value. In particular, in (ii) no extra
terms appear (no Reynolds stresses) and thus one should potentially be able
to circumvent the closure problem (turbulence modeling); by using FEM to
directly compute approximate weak solutions.

To justify the use of weak solutions to model turbulent flow, one needs to
specify what output of a turbulent flow is modelled; a weak solution is not a
pointwise approximation of a turbulent velocity field (as in a DNS), and not
an obvious mean value of an underlying turbulent velocity field either (as in
RANS or LES). In addition, there is no uniqueness result for weak solutions,
and the existence result by Leray does not extend to inviscid flow so that
weak solutions to the Euler equations cannot be proven to exist.

In [30, 32] a new mathematical framework for characterizing turbulent
flow is presented based on ε-weak solutions, a relaxation of Lerays concept
of a weak solution (thus opposite the Clay Prize problem, which asks for
a more regular solution than Leray), and weak (output) uniqueness. It is
shown that a certain least squares stabilized finite element method, referred
to as a General Galerkin (G2) method, produces ε-weak solutions, and that
such a solution is unique with respect to certain mean value output. That
is, a G2 solution is a well defined mathematical object that can be shown
to produce a unique output, such as the drag and lift of an airplane, for
example. We note that this theory also trivially extends to the inviscid Euler
equations, where the G2 solution is shown to satisfy a local energy estimate
with dissipation of kinetic energy in turbulence and shocks [30, 32]. Based
on this mathematical framework, adaptive G2 methods are constructed and
shown to be very efficient in the computation of e.g. drag for bluff bodies in
[31, 26, 27, 29]. For related work on dissipative (exact) weak solutions to the
Euler equations see [12], where we note that the existence of (exact) weak
solutions is only an assumption.

We note that often a numerical approximation can be interpreted within
any of the two frameworks (i) and (ii); a G2 solution may be interpreted as
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LES with implicit filtering by the finite element mesh and the least squares
stabilization acting as a subgrid model, and a finite volume LES approxima-
tion may be proven to be an ε-weak solution. See e.g. [21, 5] for discussions
on the dual interpretation of numerical stabilization and subgrid models.

The results in [31, 26, 27, 29] indicate that for simple geometries it is pos-
sible, to a relatively low cost, to adaptively resolve laminar boundary layers
for accurate prediction of separation. On the other hand, turbulent bound-
ary layers are too computationally demanding for any computer of today or
tomorrow, and alternative approaches are needed. To model flow with tur-
bulent boundary layers one typically divides the flow into an interior domain
and a boundary layer, where the boundary layer provides boundary conditions
for the interior domain. To provide realistic boundary conditions various ap-
proaches have been presented to model the boundary layer [48, 51], for exam-
ple based on boundary layer theory (BLT) or turbulence modeling. Inspired
by the work in [36, 38, 37, 35] where a slip with friction boundary condition
is used to study reattachement of a low Reynolds number LES (with the fric-
tion based on BLT), in [28] a simple model for a turbulent boundary layer
is suggested which is just a friction boundary condition where the friction
parameter is given by the skin friction of the turbulent boundary layer. By re-
ducing the skin friction parameter, corresponding to increasing the Reynolds
number (see e.g. [51]), in [28] it is shown that this simple model is capable of
predicting the delayed separation of a turbulent boundary layer in drag crisis
of a circular cylinder.

The limiting case of zero skin friction corresponds to solving the Euler
equations with slip boundary conditions using G2, which we refer to as an
EG2 method [28]. In EG2 computations of the flow past an airfoil we obtain
good agreement with experiments, capturing the correct separation under in-
creasing angle of attack [33]. We note that with EG2 we have no boundary
layer, and without any boundary layer, separation in accordance with the stan-
dard model (see e.g. [46, 51]); with kinetic energy dissipation in the boundary
layer together with an adverse pressure gradient, is not possible and thus there
must be another mechanism for separation. In [33] we present a new scenario
for separation based on the pressure gradient in the normal direction; that is
a force balance in the direction normal to the boundary rather than in the
tangent direction as in the standard model. In particular, EG2 computations
suggest a new resolution of the d’Alembert paradox [34], different from the
generally accepted one by Prandtl [46] based on BLT.

This paper is structured as follows: in Section 2 we briefly review the
framework for ε-weak solutions, weak uniqueness, and a posteriori error esti-
mation for incompressible flow, and in Section 3 we present recent work on
turbulent boundary layer flow and separation.
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2 A Framework for Adaptive Turbulence Computation

In this section we present a framework for adaptive turbulence computation
based on weak solutions of the fundamental equations. The mathematical ba-
sis is ε-weak solutions and weak uniqueness, and in computations we use a
weighted least squares stabilized finite element method, which we refer to as
a General Galerkin (G2) method. We present a posteriori error estimates,
and recall some results for benchmark problems illustrating the adaptive al-
gorithm.

2.1 The Navier-Stokes Equations

The incompressible Navier–Stokes (NS) equations for a constant temperature
Newtonian fluid with constant kinematic viscosity ν > 0 enclosed in an open
domain Ω in R

3, together with suitable boundary conditions, take the form:

R(û) = 0, in Ω × I, (1)

for û = (u, p), with u(x, t) the velocity vector and p(x, t) the pressure at (x, t),
I = (0, T ) is a time interval, and R(û) ≡ R̄(û)−(f, 0) = (R̄1(û), R̄2(u))−(f, 0),
with

R̄1(û) = u̇ + u · ∇u +∇p− νΔu,

R̄2(u) = ∇ · u.
(2)

A given flow may be characterized by the Reynolds number Re = UL/ν,
where U and L are representative velocity and length scales, respectively.
The Reynolds number characterizes the relative importance of viscous and
intertial effects in the flow, with the limiting case of Re = ∞ corresponding
to the inviscid Euler equations with ν = 0 in (1).

A strong (or classical) solution to NS equations is a function û that satisfies
the equations exactly, making the residual pointwise zero: R(û) = 0. The
existence of a strong solution to NS equations is an open problem, listed as
one of the Clay Institute $1 million Prize problems [9].

The only existence result available for NS is instead the one by Jean Leray,
who in 1934 proved the existence of a so called weak solution [43], satisfying
the NS equations in a mean value sense: û is a weak solution if

((R(û), v̂)) = 0, (3)

for all test functions v̂ in a test space V̂ with norm ‖·‖V̂ , consisting of suitable
differentiable functions, and R(û) is assumed to belong to a space dual to V̂ ,
and ((·, ·)) denotes a duality pairing. The proof of Leray critically depends on
the viscous term in the NS equations, and thus does not extend to the inviscid
Euler equations, for which no existence result is available.
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2.2 Definition of ε-Weak Solutions

In [30, 32] the concept of an ε-weak solution is introduced, as a relaxation
of the weak solution of Leray, which is an approximate weak solution with a
residual less than ε measured in a weak norm. We define for v̂ = (v, q) ∈ V̂ ,

((R(û), v̂)) ≡ ((u̇, v)) + ((u · ∇u, v))− ((∇ · v, p))
+ ((∇ · u, q)) + ((ν∇u,∇v))− ((f, v)),

(4)

where
V̂ = {v̂ = (v, q) ∈ [H1(Q)]4 : v ∈ L2(H1

0 (Ω))3},
and ((·, ·)) is the [L2(Q)]m inner product with m = 1, 3, or a suitable duality
pairing, over the space-time domain Q = Ω × I. In order for all the terms in
(4) to be defined, we ask u ∈ L2(I;H1

0 (Ω)3), (u · ∇)u ∈ L2(I;H−1(Ω)3), u̇ ∈
L2(I;H−1(Ω)3), p ∈ L2(I;L2(Ω)), and f ∈ L2(I;H−1(Ω)3), where H1

0 (Ω)
is the usual Sobolev space of vector functions being zero on the boundary
Γ and square integrable together with their first derivatives over Ω, with
dual H−1(Ω). As usual, L2(I;X) with X a Hilbert space denotes the set of
functions v : I → X which are square integrable.

Definition 1. We define û ∈ V̂ to be an ε-weak solution if

|((R(û), v̂))| ≤ ε‖v̂‖V̂ ∀v̂ ∈ V̂ , (5)

where ‖ · ‖V̂ denotes the H1(Q)4-norm, and we define Ŵε to be the set of
ε-weak solutions for a given ε > 0.

Note that for simplicity we here ask also the solution û to belong to the test
space V̂ , which require more regularity than necessary; for the formulation
(5) to make sense, it is sufficient that R(û) belongs to V̂ ′, the dual space of
V̂ . Equivalently, we may say that û ∈ V̂ is an ε-weak solution if

‖R(û)‖V̂ ′ ≤ ε,

where the norm ‖ · ‖V̂ ′ is a weak norm measuring mean values of R(û) with
decreasing weight as the size of the mean value decreases. Pointvalues are thus
measured very lightly.

We note that a strong solution û to the NS equations is an ε-weak solu-
tion for all ε ≥ 0, while an ε-weak solution for ε > 0 may be viewed as an
approximate weak solution. In Theorem 3 the existence of ε-weak solutions is
established for any ε > 0, a result which also includes the case of the inviscid
Euler equations with ν = 0.

2.3 Weak Uniqueness and the Dual Problem

No uniqueness result is available for weak solutions, but for ε-weak solutions
we can introduce the notion of weak (output) uniqueness [30, 32]. We then
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define a quantity of interest, or output, related to a given ε-weak solution û,
in the form of a scalar quantity

M(û) = ((û, ψ̂)), (6)

which represents a mean-value in space-time, where ψ̂ ∈ L2(Q) is a given
weight function. In typical applications the output could be drag or lift of a
body in the flow.

We now seek to estimate the difference in output of two ε-weak solutions
û = (u, p) and ŵ = (w, r). We thus seek to estimate a certain form of output
sensitivity of the space Ŵε of ε-weak solutions. To this end, we introduce the
following linearized dual problem of finding ϕ̂ = (ϕ, θ) ∈ V̂ , such that

a(û, ŵ; v̂, ϕ̂) = ((v̂, ψ̂)), ∀v̂ ∈ V̂0, (7)

where V̂0 = {v̂ ∈ V̂ : v(·, 0) = 0}, and

a(û, ŵ; v̂, ϕ̂) ≡ ((v̇, ϕ)) + ((u · ∇v, ϕ)) + ((v · ∇w,ϕ))
+ ((∇ · ϕ, q))− ((∇ · v, θ)) + ((ν∇v,∇ϕ)),

with u and w acting as coefficients, and ψ̂ is given data.
This is a linear convection-diffusion-reaction problem in variational form, u

acting as the convection coefficient and ∇w as the reaction coefficient, and the
time variable runs “backwards” in time with initial value (ϕ(·, T ) = 0) given at
final time T imposed by the variational formulation. The reaction coefficient
∇w may be large and highly fluctuating, and the convection velocity u may
also be fluctuating.

Choosing now v̂ = û− ŵ in (7), we obtain

((û, ψ̂))− ((ŵ, ψ̂)) = a(û, ŵ; û− ŵ, ϕ̂) = ((R(û), ϕ̂))− ((R(ŵ), ϕ̂)), (8)

and thus we may estimate the difference in output as follows:

|M(û)−M(ŵ)| ≤ 2ε‖ϕ̂‖V̂ . (9)

By defining the stability factor S(û, ŵ; ψ̂) = ‖ϕ̂‖V̂ , we can write

|M(û)−M(ŵ)| ≤ 2εS(û, ŵ; ψ̂), (10)

and by defining
Sε(ψ̂) = sup

û,ŵ∈Ŵε

S(û, ŵ; ψ̂), (11)

we get the following theorem which expresses output uniqueness of Ŵε:

Theorem 1. For two ε-weak solutions û, ŵ ∈ Ŵε, we have that

|M(û)−M(ŵ)| ≤ 2εSε(ψ̂), (12)

for M(·) defined by (6), and Sε(ψ̂) defined by (11).
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The size of the stability factor Sε(ψ̂) reflects the output sensitivity, where we
expect Sε(ψ̂) to increase as the mean value becomes more local. In practice,
there is a lower limit for ε, typically given by the maximal computational
resoures, and thus Sε(ψ̂) effectively determines the computability of different
outputs.

Analytical estimates of Sε(ψ̂) typically lead to exponential growth in ∇w,
but computing approximations of the dual solution corresponding to drag and
lift coefficients in turbulent flow, we find values of Sε(ψ̂) which are in the range
of 102− 103 [30], for which it is possible to choose ε so that 2εSε(ψ̂) < 1, with
the corresponding outputs thus being well defined (up to a certain tolerance).
We attribute the fact that ϕ̂ and derivatives thereof are not exponentially
large, to cancellation effects from the oscillating reaction coefficient ∇w, with
the sum of the real parts of the eigenvalues of ∇w being very small, with the
sign being about as often positive as negative, see [30]. These cancellation
effects seem to be impossible to account for in purely theoretical estimates,
because knowledge of the underlying flow velocity is necessary.

2.4 Computation with G2 Methods

In computations we use stabilized finite element methods of the form: Find
Û ≡ Ûh ∈ V̂h, where V̂h ⊂ V̂ is a finite dimensional subspace defined on a
computational mesh in space-time of mesh size h, such that

((R(Û), v̂)) + ((hR(Û), R̄(v̂))) = 0, ∀v̂ ∈ V̂h, (13)

where R(Û) ≡ R̄(Û)− (f, 0) = (R̄1(Û), R̄2(U))− (f, 0), and for ŵ = (w, r),

R̄1(ŵ) = ẇ + U · ∇w +∇r − νΔw,

R̄2(w) = ∇ · w,
(14)

with elementwise definition of second order terms. We refer to these methods
as General Galerkin (G2) methods, and we thus refer to Û as a G2 solution.
Under suitable assumptions, choosing v̂ = Û in (13) gives the following energy
estimate [30]:

Theorem 2. For f = 0, the solution Û in (13) satisfies the following energy
estimate:

1
2
‖U‖2 + ((ν∇U,∇U)) + ((hR(Û), R(Û))) ≤ 1

2
‖u0‖2. (15)

The term ((R(Û), v)) corresponds to Galerkin’s method and the term
((hR(û), R̄(v̂))) corresponds to a weighted residual least squares method with
stabilizing effect expressed in (15). In particular, in [26] it is shown that the
G2 dissipation in computations satisfies a law of finite dissipation (see [17]),
with the dissipative term ((hR(Û), R(Û))) being independent of h after some
mesh refinement.
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The following theorem guarantees the existence of an ε-weak solution to
the NS equations for any ε > 0, including also the inviscid case of the Euler
equations with ν = 0:

Theorem 3. Assume that MU , the maximum of the computed velocity U(x, t),
is bounded for all h > 0, then Û is an ε-weak solution with ε = CU‖hR(Û)‖,
where CU = (Ci + MU ) and Ci is an interpolation constant. Theorem 2 also
gives that ε ≤ C

√
h, with C depending on Ci,MU and ‖u0‖.

Theorem 3 shows that a G2 solution Û is an ε-weak solution, and computing
Û we can directly determine the corresponding ε.

2.5 A Posteriori Error Estimation and an Adaptive Algorithm

We now let û be an ε-weak solution of the NS equations with ε small and we
let Û be a G2 solution, which can be viewed to be an εG2-weak solution with

εG2 = CU‖hR(Û)‖ >> ε. (16)

By Theorem 1 we get the following a posteriori error estimate for a mean
value output M(·) given by a function ψ̂:

Theorem 4. For a mean value output M(·) defined by (6), with Û a G2
solution and û ∈Wε, and εG2 defined by (16), we have that

|M(û)−M(Û)| ≤ (CU‖hR(Û)‖+ ε)SεG2(ψ̂), (17)

where SεG2(ψ̂) is the stability factor defined by (11).

We note that for weak uniqueness the residual only needs to be small in a
weak norm, and correspondingly for computability the G2 residual only needs
to be small when weighted by h. This means that for accurate approximation
of a mean value output M(·), the NS equations do not need to be satisfied
pointwise, corresponding to a pointwise small residual, but only in an average
sense, corresponding to the residual being small only in a weak norm. In
computations we find that in fact the G2 residual typically is large pointwise
for solutions corresponding to accurate approximation of mean value output,
such as the drag of a bluff body.

Based on a sharper version of Theorem 4 with elementwise dual weights
of the local residuals, see e.g. [27], we construct adaptive algorithms of the
form:

Algorithm 5 (Adaptive G2) Given an initial coarse computational space
mesh T 0, start at k = 0, then do

(1) Compute approximation of the primal problem using T k.
(2) Compute approximation of the dual problem using T k.
(3) If the error is less than the tolerance, then STOP, else:



30 J. Hoffman

(4) Refine a fraction of the elements in T k with largest local contribution to
the global error.

(5) Set k = k + 1, then goto (1).

Examples in [31, 26, 27, 29] of computing drag for bluff body problems,
show a very efficient method with accurate approximation of drag, lift, pres-
sure coefficients and Strouhal numbers etc. using very few degrees of freedom
compared to ad hoc refined computational meshes.

3 Turbulent Boundary Layers

In this section we review our recent and ongoing research on turbulent bound-
ary layer flow. The computational cost of resolving laminar boundary layers
by the mesh may be reasonable in many applications, but for turbulent bound-
ary layers this is not an option. Instead the typical approach is to divide the
computational domain into an interior part and a boundary layer, where the
solution in the boundary layer provides boundary conditions for the interior
part. Boundary layer modeling is a very intensive research area, with many
different approaches based on e.g. boundary layer theory, turbulence modeling
or multiscale resolution, see e.g. [48] for an overview.

3.1 Drag Crisis and Skin Friction Boundary Conditions

A challenging test problem for simulation of turbulent boundary layer sepa-
ration is drag crisis, which refer to the problem of simulating the flow past a
circular cylinder or a sphere at a Reynolds number so high (about 10 5) that
the boundary layer undergoes transition to turbulence resulting in a delayed
separation with smaller wake and a reduced drag.

To model turbulent boundary layer separation, in [28] a skin friction
boundary layer model is introduced which is based on a Navier slip boundary
condition with the friction parameter given by the skin friction of the turbu-
lent boundary layer. A similar model was studied in [15, 13, 14, 52] for reat-
tachement in low Reynolds number LES. Experiments indicate that the skin
friction is typically decreasing slowly with the Reynolds number (cf ∼ Re−0.2

for a flat plate [51]), and thus decreasing skin friction suggests a model for
simulating drag crisis. The results in [28] show that indeed the decreasing skin
friction results in delayed separation and a drag corresponding to that of drag
crisis in experiments.

We note that drag crisis has earlier been studied computationally, using
e.g. DES [10].

3.2 The EG2 Method

A natural question is then what happens when we let the skin friction go to
zero, corresponding to the Reynolds number going to infinity? To approach
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this question in [28] we again compute the flow past a circular cylinder, now
using G2 to solve the inviscid Euler equations with slip boundary conditions,
which we refer to as an EG2 method. We know that there exists an exact
potential solution to this problem, corresponding to zero drag, and we know
that by the Kelvin Theorem no vorticity should be able to develop from an
irrotational initial solution as the potential solution.

Although, in the EG2 computations we find that the potential solution is
unstable, and instead a turbulent solution develops with strong streamwise
vorticity generation at separation. The stability of the potential solution is
straight forward to analyze using linear stability analysis, with the stability
depending on the real part of the eigenvalues of the gradient of the velocity
field [30, 34], which due to the divergence free condition must include unstable
eigenvalues unless all eigenvalues have zero real part:

Theorem 6. Any exact solution û to the incompressible Euler equations is
(exponentially) unstable unless all eigenvalues of ∇u have zero real part.

Analyzing also the stability of the vorticity equations one finds that the accel-
eration of the flow in the streamwise direction at separation generates expo-
nential growth of streamwise vorticity [30, 34], which we find in the computa-
tions as the unstable potential solution develops into a turbulent solution with
generation of streamwise vorticity at separation (vortex stretching), and since
the turbulent (ε-weak) solution is not an exact solution the Kelvin Theorem
is no longer valid.

3.3 The d’Alembert Paradox

The instability of the potential solution suggests a new resolution to the
d’Alembert paradox from 1752 [11], different from the generally accepted
one by Prandtl from 1904 [46] being based on boundary layer theory. The
d’Alembert paradox points to the obvious lack in agreement between the zero
drag potential solution to the Euler equations proven to exist, and exper-
imental observations showing significant drag increasing with the Reynolds
number. In particular, the potential solution for the flow past an airfoil has
no lift and thus flying would be mathematically impossible, and with the
break-through of aviation at the end of the 19th and beginning of the 20th
century, with the glider of Otto Lillienthal and the Flyer of the Wright broth-
ers, the phenomenon of flying and the d’Alembert paradox were in great need
of an explanation.

To approach this problem two ideas have had major impact on the field:
the Kutta-Zhukovsky condition of fixating the separation of the flow past an
airfoil to the trailing edge, resulting in a new solution with lift, and the bound-
ary layer theory (BLT) of Prandtl from 1904 [46], postulating the importance
of including a viscous boundary layer in the model even for very high Re
by substituting the slip boundary condition of the Euler equations for the
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no slip boundary condition of the Navier-Stokes equations. Prandtl also sug-
gested a mechanism for separation with loss of kinetic energy of the flow in
the boundary layer together with an adverse pressure gradient forcing the
velocity in the boundary layer to zero, resulting in separation with recircula-
tion. Even though not explicitly stated in Prandtl’s 1904 paper, BLT together
with his scenario for separation is generally accepted as the resolution of the
d’Alembert paradox, see e.g. [45].

The new resolution of the paradox presented in [34] is fundamenally dif-
ferent from the resolution by Prandtl; being based on the instability of the
potential solution and (streamwise) vorticity generation at separation of the
turbulent (ε-weak) solutions. The two resolutions of the paradox are not com-
patible, and the vorticity generated at separation in EG2 computations cannot
be explained within the paradigm of (the assumption of) an exact (classical)
solution to the Euler equations.

3.4 Turbulent Boundary Layer Separation

Computing with EG2 (using a mesh of about 150 000 vertices) the flow past
an airfoil NACA 0012 with increasing angle of attack [30], simulating take-off,
we find separation of the flow not following the standard model of separation
due to (i) loss of kinetic energy in the boundary layer together with (ii) an
adverse pressure gradient in the flow direction, resulting in separation with
recirculation when the tangential velocity of the flow is reversed.

In EG2 we have no boundary layer, and thus another mechanism must
be responsible for separation. In particular, we find that at separation of the
flow on the upper surface of the airfoil the flow is not retarded to zero along
the boundary as in the standard model, but instead separation occurs as a
thin layer is forming in the flow over which the streamwise velocity changes
magnitude sharply from the free stream velocity to a much lower velocity
that keeps decreasing until the low pressure in the resulting wake is so low
that recirculation and turbulence is forming. We also note the streamwise
vorticity forming at the trailing edge, as in the case of the circular cylinder,
as a consequence of the instability of the potential solution.

The standard model based on Prandtl’s 1904 model [46] is formulated as
a force balance in the tangential direction along the boundary, whereas in
[33] we instead propose an alternative model based on a force balance in the
direction normal to the boundary; with separation given by the sign of the
normal derivative of the pressure along the boundary.

The EG2 computations also couple to early results on Euler solvers [44],
where promising results were obtained for sharp leading edge Delta wings.
But without the sharp leading edge, results could not be explained within the
framework of exact solutions to the Euler equations. In particular, two main
objections were raised; the inability of computing the potential solution, and
(ii) the violation of the Kelvin Theorem with vorticity generation without a
sharp leading edge. On the other hand, within the framework of EG2 and
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ε-weak solutions it is straight forward to see that (i) the potential solution
cannot be computed since it is unstable, and (ii) the Kelvin Theorem is vi-
olated since the resulting EG2 (ε-weak) solution does not satisfy the Euler
equations pointwise, and thus the assumptions of the Kelvin Theorem are not
valid.
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Abstract. The wavelet-based multi-resolution analysis technique is used to develop
a novel approach to the modelling of the sub-grid terms in the large-eddy simula-
tion equations. This new approach is called WaveLES. A numerical framework for
the solution of the projected equations is developed for one and three-dimensional
problems. The WaveLES method is assessed in a priori tests on an atmospheric tur-
bulent time series, and a direct numerical simulation. A posteriori tests are carried
out for the Burgers equation.

Keywords: Large-eddy simulation, Sub-grid model, Multi-resolution, Wavelets

1 Introduction

The use of wavelets for the numerical solution of flows began with the work of
Liandrat and Tchamitchian [11] and Bacry, Mallat and Papanicolaou [2]. New
approaches to study and model turbulent flows using the wavelet representa-
tion have been investigated by Meneveau [14] and Farge [8]. Based on wavelet
thresholding, Farge, Schneider and Kevlahan [9] have proposed the Coherent
Vortex Simulation (CVS) technique, which permits the separation of a flow
into coherent (organised) and incoherent (random) structures. Wavelet-based
methods for the solution of turbulent reacting flows have also been developed
by Prosser and Cant [15] and Bockhorn, Frölich and Schneider [5]. In the
context of LES, Goldstein and Vasilyev have recently proposed the Stochastic
Coherent Adaptive Large-Eddy Simulation (SCALES) technique [10], which
combines CVS filtering with the Germano dynamic approach.

The locality property of the wavelet transform (WT), together with its
resolution adaptability and, most importantly, its ability to preserve the scale-
invariance properties of the analysed signal, makes it a very appealing tool
for LES sub-grid (sgs) modelling.

Here, we propose a new approach based on multi-resolution analysis
(MRA). Wavelets are used as a basis onto which the N-S equations are pro-
jected. The selected basis inherently provides a finite difference (FD) method
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for the discretisation of the derivatives, which are expressed in terms of a hi-
erarchy of sparse wavelet spaces. The projected equations are then truncated
to the desired level of resolution. The sub-grid scales, required for solving the
large-scale field, are computed explicitly through the equations that govern
the evolution of the wavelet coefficients.

2 Multi-Resolution Analysis

The principle of MRA, introduced by Mallat in 1989 [12], is to analyse the data
at different scale and space resolutions, viewing the signal through windows
of different sizes. Large windows will capture the global behaviour, whereas
small windows will focus on local features. The MRA can thus be interpreted
as a decomposition into approximations at coarser and coarser resolutions.
The details, which have been lost when moving from a higher level of approx-
imation to a lower one, are encoded in the wavelet coefficients.

An MRA of L2(R) is defined by a sequence of nested spaces {Vj}j∈Z,

{0} ⊂ ... ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ ... ⊂ L2(R) (1)

For each subspace, there exists a function φj,k(x) ∈ Vj , called scaling function,
which can be obtained by translation and dilation of a mother scaling function,
φ(x) ∈ L2(R), as φj,k(x) = φ(2jx−k). Here j, k ∈ Z are the scale and position
indeces, respectively.

The projection Pj(f), of a signal f(x) ∈ L2(R) onto a subspace Vj , is
expressed in terms of the scaling function coefficients, sj,k, defined by the
inner product between the signal and the scaling functions,

Pj(f) =
2j∑

k=1

sj,kφj,k(x) , sj,k = 〈f(u), φj,k(u)〉 (2)

The detail information required to move up one resolution level is contained
in the complement space of Vj , namely Wj , such that, Vj ⊕Wj = Vj+1.
The subspaces Wj are called wavelet spaces. If the wavelet basis is orthogonal,
then Vj and Wj possess the following properties,

Vj ⊥Wj , Wm ⊥Wn ∀m �= n (3)

The projection Qj(f), of f(x) onto Wj , is written in terms of the wavelet
coefficients, dj,k, defined by the inner products between the signal and the
wavelet functions, ψj,k(x) ∈Wj ,

Qj(f) =
2j∑

k=1

dj,kψj,k(x) , dj,k = 〈f(u), ψj,k(u)〉 (4)

As for the scaling functions, the wavelets are dilates and translates of a mother
wavelet, ψ(x) ∈ L2(R) : ψj,k(x) = ψ(2jx− k).
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2.1 Choice of Wavelets

The orthogonal wavelet family proposed by Daubechies [7] has been selected
as basis for the WaveLES technique. Called after their creator, the Daubechies
wavelets are fully parametrised and allow a straightforward calculation of the
analysis filter. They are characterised by having compact support, and the
highest number of vanishing moments compatible with their support width.
The number of vanishing moments is related to the regularity of the wavelet,
and therefore, to its degree of differentiability.

Since the N-S equations contain derivatives up to order two, we will need
wavelets which are at least twice differentiable. The wavelet family with nar-
rower support width to fulfil this condition is the Daubechies six-tap filter
(Daub6). This family is defined by six filter coefficients and has three vanish-
ing moments.

2.2 A Word on Notation

The notation used in this paper is similar to that used by Beylkin et al. in [4].
Projection: In the wavelet framework, any variable f(x) can be approxi-

mated by its discrete representation in a sufficiently high resolution space VJ ,
defined by 2J sample values,

f(x) ≈ PJ(f) =
2J∑

k=1

fkφJ,k(x) (5)

A coarser representation of f is then given by its projection Pj(f) onto the
scaling function space Vj , defined by 2j scaling function coefficients, and
j < J .

In the context of LES, we will associate the coarse space Vj with the LES
grid, whose size is ΔLES = 2−j . The full resolution space VJ is thus equivalent
to the DNS field, with grid spacing ΔDNS = 2−J . Hence, the approximations
Pj(f) and PJ(f), or in shorthand notation fj and fJ , will correspond to the
LES and DNS flow solutions respectively.

To reconstruct PJ(f) from Pj(f), we must add the unresolved sub-grid
scale information included in the wavelet spaces {Qj +Qj+1 + · · ·+QJ−1}(f).
For compactness, these terms will be grouped under Qj,sgs(f), in shorthand
syntax f ′

j . Using this notation, the MRA decomposition of a discrete variable
f can be expressed as,

PJ(f) = Pj(f) +
J−1∑
i=j

Qi(f) = Pj(f) + Qj,sgs(f) = fj + f ′
j (6)

Reconstruction: The symbol Rj0
j [·] will designate the operator to recon-

struct a vector on subspace Vj or Wj , in the subspace Vj0 , j0 ∈ Z. In Vj0 ,
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one can then use the coefficients Rj0
j [Pj(f)] and Rj0

j [Qj(f)] to perform the
pertinent operations. When the level of origin, j, and destination, j0, are the
same, the superindex is dropped and the operator Rj0 [Pj0(f)] simply repre-
sents the scaling function coefficients of the projection of f on Vj0 .

Derivatives: The operators (Pj ∂/∂xl , Pj ∂
2/∂x2

l ) represent the FD ap-
proximations on Vj , of the first and second derivatives in the xl-direction [3].
Similarly, the operators (Qj ∂/∂xl , Qj ∂

2/∂x2
l ), denote the FD approxima-

tions of the first and second derivatives on Wj . Using abbreviated syntax,
(Pj ∂/∂xl , Pj ∂

2/∂x2
l ) will also be written as (∂(l)

j , ∂(ll)
j ).

3 Wavelet-Based Large Eddy Simulation

The WaveLES method is firstly illustrated for the Burgers equation, which
produces a one-dimensional (1D) analogue of the turbulent energy cascade.
This simplified system avoids the cumbersome notation of the full three-
dimensional (3D) problem. The extrapolation of the methodology to 3D is
straightforward and is presented in Sect. 4.2.

3.1 Burgers Equation in Wavelet Bases

The Burgers equation in physical space reads,

∂u

∂t
+

∂

∂x

(
u2

2

)
− ν

∂2u

∂x2
= 0 (7)

If we project (7) onto the LES grid and reunite the resolved terms on the left
hand side (l.h.s.), we obtain,

∂

∂t
Pj(u) +

1
2
Pj

∂

∂x
Pj(u)2 − νPj

∂2

∂x2
Pj(u) =

−1
2
Pj

∂

∂x

(
u2 − Pj(u)2

)
+ νPj

∂2

∂x2
(u− Pj(u))

(8)

The first term on the right hand side (r.h.s.) of (8) is called convective sgs
term, and will be designated ∂

(1)
j Cj . The nature of this term can be brought

out by combining expressions (5) and (6),

∂
(1)
j Cj = ∂

(1)
j (PJ(u)− Pj(u)) (PJ(u) + Pj(u))

= ∂
(1)
j

(
2Pj(u)Qj,sgs(u) + Qj,sgs(u)2

) (9)

Expansion (9) highlights the existence of two distinct contributions. The first
one is due to interactions between the resolved and the sub-grid scales. It will
be named res-sgs component. The second one represents the interactions only
between the sub-grid scales, called here sgs-sgs component.
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Note that, unlike traditional LES, commutation between the projection
and difference operators is not assumed. This will generate an additional vis-
cous sgs component (second term on the r.h.s. of (8)),

∂
(11)
j Dj = ν ∂

(11)
j (PJ(u)− Pj(u)) = ν ∂

(11)
j Qj,sgs(u) (10)

3.2 Modelling Approach

The modelling strategy used in WaveLES starts with the observation that, if
the flow field has a Kolmogorov-like spectrum, κ−β , and the wavelet basis has
sufficient regularity (fast decay of the wavelet function and its derivatives), a
good representation of the sgs field is provided by the M first terms in the
wavelet series (M -level approach): Qj,sgs(u) ≈ Qj(u)+ · · ·+Qj+M−1(u). The
evolution of each wavelet component is governed by the projection of (7) onto
the subspaces Wm, m = j, . . . , j + M − 1 ,

∂

∂t
Qm(u) +

1
2
Qm

∂

∂x
u2 − ν Qm

∂2

∂x2
u = 0 (11)

Invoking the assumptions just made, the full resolution field, u, may be ap-
proximated by the sum of the resolved field and the leading terms in the
wavelet series, namely, u ≈ Pj+M (u) = Pj(u) + Qj,sgs(u). Injecting this into
(11) yields,

∂

∂t
Qm(u) +

1
2
Qm

∂

∂x
Pj+M (u)2 − ν Qm

∂2

∂x2
Pj+M (u) = 0 (12)

where the index m spans from j to j+M−1. Equations (8) and (12) constitute
a system of M + 1 coupled equations for the resolved and the sub-grid fields.

Observe that, in the DNS limiting case, the number of levels considered
in the simulation is M = J − j, and all the wavelet coefficients, down to the
Kolmogorov scale (η ∼ 2ΔDNS = 1/2J−1), are computed explicitly.

3.3 Practical Implementation

The estimation of the sgs field from (12) requires the definition of a hierarchy
of grids with sizes Δm = 2−m. Each of these grids will be associated with a
wavelet space Wm. This leads to a multi-level approach, in which the number
of levels is prescribed by the number of terms considered in the series. We will
now proceed to explain how (8) and (12) are solved numerically. For simplicity,
we assume that the solution is time advanced using the forward Euler method.
The way in which the formulation is presented in this research leaves the way
open for the implementation of more sophisticated schemes.

Resolved Non-linear Term: Indeed, multiplication of two coarse-grain vari-
ables, Pj(u)2, will generate new coefficients over a range of wavelet spaces.
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Clearly, the spread of the product will depend on the nature of the field, but
for smooth solutions of the N-S equations a good approximation would be,

Pj
∂

∂x
Pj(u)2 ≈ Pj

∂

∂x
Rj+1

j [Pj(u)]2 (13)

which amounts to reconstructing Pj(u) in Vj+1, taking the pointwise product
of the coefficients Rj+1

j [Pj(u)]2, and applying the differential operator ∂(1)
j to

the resulting field. An in-depth discussion on the treatment of non-linearities
in wavelet bases can be found in [4].

Unresolved Sub-grid Term: The evaluation of the sgs field requires knowl-
edge of the wavelet coefficients at the designated number of levels, whose
evolution is governed by (12). The wavelet coefficients at a generic level m
can be computed from,

Qm(u)n+1 = Qm(u)n + Δt

{
−1

2
Qm

∂

∂x
Rj+M [Pj+M (u)]2

+ ν Qm
∂2

∂x2
Pj+M (u)

}
,

(14)

where Δt is the time step and the superscript n refers to the solution at time
tn = nΔt. The approximation Pj+M (u) is defined on the finest grid considered
in the simulation, namely Vj+M . It can be evaluated from the values of the
detail coefficients available at that time. Observe that the products Pj+M (u)2

are calculated in Vj+M , as indicated by the use of the operator Rj+M [·].
Once the detail coefficients at time tn+1 are known at the required number

of levels, the convective and viscous closure terms in (8) can be calculated by
assuming PJ(u) ≈ Pj+M (u) = Pj(u)n + Qj,sgs(u)n+1,

∂
(1)
j Cn+1

j ≈ 1
2

{
∂

(1)
j Rj+M [Pj+M (u)]2 − ∂

(1)
j R

j+1
j [Pj(u)n]2

}
(15)

∂
(11)
j Dn+1

j ≈ ν
{
∂

(11)
j Pj+M (u)− ∂

(11)
j Pj(u)n

}
(16)

4 A Priori Tests of the WaveLES Technique

Despite the known limitations in the comparison of quantities obtained from
LES models against filtered DNS fields, a priori testing provides valuable
information about the accuracy of the approximation used.

In this work, a so-called DNS quantity is obtained by operating on the
full resolution field, defined in VJ , then projecting the outcome on the coarse
grid Vj . On the other hand, an LES quantity is derived from the DNS field
by truncating its MRA decomposition at the prescribed level. The result of
operating on this truncated field is then projected on the coarse mesh Vj .
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Fig. 1 Fourier spectra of data sets. The spectra have been multiplied by κ5/3 to
highlight the existence of an inertial range. Left: Time Series. Right: DNS

4.1 A Priori Tests: Turbulent Time Series

The unresolved convective term (15) is evaluated for an atmospheric turbu-
lent time series. The source of these data can be found at http://www2.isye.
gatech.edu/~brani/datapro.html, where a detailed description of the ex-
perimental parameters is provided. Only the horizontal component of the ve-
locity field is considered here, from which the mean has been removed. Making
use of Taylor’s hypothesis, the data is split into 32 series of 210 samples. The
averaged spectrum (left-most plot in Fig. 1) exhibits a clear inertial subrange
over a few octaves.

Analysis of Closure Terms

To assess the accuracy of the WaveLES method in capturing the main features
of the convective sgs field, (15) has been decomposed into its res-sgs and sgs-
sgs components, as defined in Sect. 3.1. This is illustrated in Figs. 2 and 3,
for the one and two-level approaches respectively.

The graphs reveal the high fidelity with which the method represents the
correlations between resolved and sub-grid scales, as shown by the high values
of the correlation coefficient, ρ, above 0.9. The structure and order of magni-
tude of the sgs-sgs interaction term is relatively well captured, although there
is a clear loss of correlation with respect to the res-sgs term. Not surprisingly,
the two-level approach leads to a substantial improvement of these correla-
tions. Nevertheless, the fact of adding one more level does not appear to have
a significant effect on the res-sgs term. Observe also that the contribution of
the res-sgs correlations to the total sgs term ∂

(1)
j Cj prevails over that of the

sgs-sgs component.
For brevity, the viscous sgs term is not discussed here. There is no added

difficulty in its calculation and the accuracy of its approximation chiefly de-
pends on the regularity of the basis functions. A posteriori tests on the Burgers
equation show that, for very high-Reynolds-number flows, its contribution can
be safely removed from (8).
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Fig. 2 Convective sgs term (J = 10, j = 5, M = 1). From left to right: res-sgs

interactions ∂
(1)
j (uju

′
j) ; sgs-sgs interactions ∂

(1)
j (u′ 2

j ) ; total sgs term ∂
(1)
j Cj . The

upper panels show the correlations between DNS and LES values. The lower panels
compare typical 1D realizations (− DNS; − ∗ − LES)

Fig. 3 Convective sgs term (J = 10, j = 5, M = 2). From left to right: res-sgs

interactions ∂
(1)
j (uju

′
j) ; sgs-sgs interactions ∂

(1)
j (u′ 2

j ) ; total sgs term ∂
(1)
j Cj . The

upper panels show the correlations between DNS and LES values. The lower panels
compare typical 1D realizations (− DNS; − ∗ − LES)

4.2 A Priori Tests: DNS Turbulence

The validity of the WaveLES technique for 3D problems is assessed in a priori
tests on a DNS of decaying isotropic turbulence. The flow field was computed
using a pseudo-spectral code with anti-aliasing, FERGUS, developed by Cant
[6]. The number of Fourier modes used in the simulation was 256 in each
direction. The Reynolds number, based on the Taylor microscale, was Reλ ≈
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60. The simulation was run for about 1.5 eddy-turnover times in order to
obtain a well developed spectrum (see right graph in Fig. 1).

3D Formulation and Notation

A separable 3D MRA [13] consists in the tensor product of 1D spaces in each
of the axis directions, V3

j = Vx
j ⊗Vy

j ⊗Vz
j . As in 1D, the approximation of

a variable f(x) at scale 2j is defined by its projection on V3
j ∈ L2(R3).

Following the notation used throughout this paper, we will denote by
P 3

j (f) the projection of f onto the LES grid, V3
j (ΔLES = 2−3j). The full reso-

lution DNS is now given by P 3
J (f) (ΔDNS = 2−3J ), which defines a projection

on V3
J . Hence, the incompressible N-S equations in wavelet bases read,

P 3
j

∂

∂xk
P 3

j (uk) = −P 3
j

∂

∂xk

(
P 3

J (uk)− P 3
j (uk)

)
(17)

∂

∂t
P 3

j (uk) + P 3
j

∂

∂xl

(
P 3

j (uk)P 3
j (ul)

)
+

1
ρ
P 3

j

∂

∂xk
P 3

j (p)− νP 3
j

∂2

∂x2
l

P 3
j (uk) =

−P 3
j

∂

∂xl

(
P 3

J (uk)P 3
J (ul)− P 3

j (uk)P 3
j (ul)

)
(18)

+ νP 3
j

∂2

∂x2
l

(
P 3

J (uk)− P 3
j (uk)

)
− 1

ρ
P 3

j

∂

∂xk

(
P 3

J (p)− P 3
j (p)

)
(19)

where the differences {P 3
J (f) − P 3

j (f)} represent the unknown sgs field. By
analogy with the 1D case, it will be referred to as Q3

j,sgs(f).
Observe that the approximation of the N-S equations in V3

j generates two
additional unresolved components. The first one is called mass conservation
sgs term (r.h.s. of (17)). This term can be unambiguously evaluated once the
hierarchy of wavelet coefficients is known. The second one is the pressure sgs
term, second element in (19), which is not known explictly. For incompressible
flows, it is standard practice to conceive the pressure as variable which is used
to enforce mass conservation. A pressure-correction method can therefore be
used to calculate this contribution. Due to shortness of space, a more detailed
discussion of these terms is not included in this paper.

Analysis of Closure Terms

Let us now focus on the non-linear sgs term (18). We believe that the com-
ments made in Sect. 4.1 in relation to the viscous sgs term (first element in
(19)) hold equally in the 3D case.

Figures 4 and 5 show the correlations between DNS and LES, for the res-
sgs and sgs-sgs terms, respectively. This is done for the three components of
the convective sgs term in the x-momentum equation. The analysis on the six
other components yielded similar results, as expected for an isotropic flow.
The correlation coefficients are very close to one for the res-sgs component,
and around 10% lower for the sgs-sgs interaction term. These results are in
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Fig. 4 Convective res-sgs term in the x-momentum equation (J = 8, j = 5, M = 1).

From left to right: ∂
(1)
j (uju

′
j) , ∂

(2)
j (ujv

′
j) , and ∂

(3)
j (ujw

′
j) . The upper panels show

the correlations between DNS and LES values. The lower panels compare typical
1D realizations (− DNS; − ∗ − LES)

Fig. 5 Convective sgs-sgs term in the x-momentum equation (J = 8, j = 5, M = 1).

From left to right: ∂
(1)
j (u′ 2

j ) , ∂
(2)
j (u′

jv
′
j) , and ∂

(3)
j (u′

jw
′
j) . The upper panels show

the correlations between DNS and LES values. The lower panels compare typical
1D realizations (− DNS; − ∗ − LES)

agreement with those obtained for the atmospheric data. The better approxi-
mation obtained here is partly due to a slightly steeper decay of the spectrum
at the cut-off wave number in the DNS turbulence (lower Reynolds number).
The correlation coefficients for the total convective sgs field in the momen-
tum equations, not shown here, turned out to be in the order of 0.95. As
anticipated, slightly lower than that of the res-sgs term alone.
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Fig. 6 Solution of the Burgers equation. From left to right: velocity profiles at
t=0.06s, Fourier spectra at t=0.06s and temporal evolution of the mean kinetic
energy and dissipation, ε = 〈(∂(1)

j uj)
2〉. In all graphs (- DNS; • LES)

5 A Posteriori Tests: Burgers Turbulence

This section reports the main results of applying the WaveLES technique to
the solution of (8). The associated full resolution DNS field is also computed
for comparison. An initial Gaussian random field is specified by means of a
Batchelor-Townsend spectrum. No external forcing is applied and the solution
consists of a freely decaying ensemble of shock fronts. The parameters of the
simulation are the following: ν = 1/15000, J = 15, j = 7 and M = 2. The
contribution of the viscous sgs term (10) is neglected in (8).

Figure 6 compares the outcome of the simulations at time t=0.06s. The
agreement between the projected DNS and the LES velocity profiles is very
good overall, the highest errors occurring in the vicinity of the discontinuities.
Despite these local errors, the resolved part of the energy spectrum is neatly
captured, and an excellent match is found in the decay of kinetic energy. On
the other hand, the level of dissipation appears to be slightly lower in the
LES. However, the trend and the order of magnitude of the dissipation field
are very well predicted.

6 Conclusions

A systematic approach to the solution of the LES equations has been proposed
based on the wavelet transform. There is no model or parametrisation involved
in the methodology. This new technique provides a consistent mathematical
formulation for the decomposition of the flow into large and small scales, and
gives deep insight into the physics of the turbulent cascade.

A numerical framework has also been developed for the solution of the
resolved and sub-grid scale equations. Fast algorithms for the wavelet trans-
form, as well as for the derivation and multiplication of functions in wavelet
basis exist in the literature [3, 4]. Furthermore, the wavelet representation
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naturally lends itself to the implementation of more sophisticated space-time
adaptive schemes [1].

The WaveLES method has been successfully assessed in a priori tests
on turbulence data from DNS and experiment. A posteriori tests have been
performed on the Burgers equation. The results of these analyses appear very
encouraging and demonstrate the potential of our approach as a powerful
alternative to traditional LES.

The implementation and actual simulation of the 3D problem is the subject
of future work. The extension of the method to complex geometries will also
be investigated by considering the use of more flexible wavelet filters, such as
the Second Generation Wavelets developed by Sweldens [16].
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Analysis of Truncation Errors and Design
of Physically Optimized Discretizations
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Abstract. Further development of Large Eddy Simulation (LES) faces as major
obstacle the strong coupling between subgrid-scale (SGS) model and the trunca-
tion error of the numerical discretization. Recent analyzes indicate that for certain
discretizations and certain flow configurations the truncation error itself can act as
implicit SGS model. In this paper, we explore how implicit SGS models can be de-
rived systematically and propose a procedure for design, analysis, and optimization
of nonlinear discretizations. Implicit LES can be made rigorous by requiring that the
numerical dissipation approximates the SGS dissipation obtained from the analysis
of nonlinear interactions in turbulence.

Keywords: Truncation error, Optimization, Subgrid-scale modeling, Implicit LES

1 Introduction

In classical numerical analysis, discretization coefficients are usually chosen in
such a way that the formal order of accuracy of a discretization is maximum.
This approach holds for direct numerical simulation but not for large-eddy
simulation (LES), where the chosen grid resolution essentially defines the
range of represented scales. At a finite grid size, truncation errors interfere
with the turbulence models. Thus, free discretization coefficients should be
selected in such a way that the superposition of all contributions (truncation
errors, modeling terms, and modeling errors) is optimal. Further development
of LES faces a major obstacle in the strong coupling between subgrid-scale
(SGS) modeling and the truncation error of the numerical discretization. SGS
models generally operate on scales that are marginally resolved by the under-
lying numerical method. This mutual interference can have large and generally
unpredictable effects on the accuracy of the solution. On the other hand, one
can exploit this link by developing discretization methods from subgrid-scale
models, or vice versa. Approaches where SGS models and numerical discretiza-
tions are fully merged are called implicit LES, a comprehensive review on such
methods is given in the book of Grinstein et al. [10].

J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, 49
c© Springer Science+Business Media B.V. 2008
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Previous approaches to implicit SGS modeling rely on the application of
preexisting discretization schemes, which have been developed for other pur-
poses, to fluid-flow turbulence. Consequently methods with suitable implicit
SGS model are usually found by trial and error. Recent analyses have shown
that stabilizing an under-resolved simulations by upwind or non-oscillatory
schemes is insufficient for accurately representing SGS turbulence, although
some general trends can be reproduced [8, 6, 5]. Employing implicit LES for
prediction, however, requires numerical methods that are specially designed,
optimized, and validated for the physical problem to be considered. A full
coupling of SGS model and discretization scheme cannot be achieved without
incorporating physical reasoning into the design of the implicit SGS model.

The objective of this work is to improve on the aforementioned modeling
uncertainties by exploring how implicit subgrid-scale modeling can be ap-
proached systematically. For this purpose, methods of design, analysis, and
optimization of nonlinear discretizations for implicit LES are devised. Previ-
ous approaches frequently have led to the belief that an implicit subgrid-scale
model is generally inferred by the choice of discretization. This is not necessar-
ily the case. In fact, implicit subgrid-scale models can be designed deliberately.
The following systematic procedure for implicit SGS modeling is proposed:

Discretization design: First, a general nonlinear discretization scheme is
developed on the basis of standard approaches. These, however, are modified in
such a way that the resulting truncation error can be controlled. The resulting
scheme should be as simple as possible to facilitate computation at reasonable
cost, and as complex as necessary to allow for implicit modeling.

Modified-differential-equation analysis: The general discretization method
is analyzed with respect to its implicit SGS modeling capabilities. A suitable
tool is an analysis of the modified-differential equation (MDEA). Based on
Taylor-series expansions of the solution, such an analysis allows to determine
the relation of the implicit model to any given explicit SGS model [18, 7].
However, MDEA of more complex nonlinear discretization schemes for non-
linear three-dimensional differential equations is practically impossible. An
alternative approach for complex discretizations is an a-posteriori analysis of
the spectral numerical dissipation.

SGS-model calibration: In the final step, appropriate values of the param-
eters inherent to the discretization scheme are determined. With implicit LES
we do not aim at formally highest order of accuracy. Instead, discretization
coefficients are optimized in such a way that the truncation error acts as a
physically motivated SGS model in regions where the flow is turbulent, while
maintaining a second-order accurate central discretization in regions where
the flow is laminar.

In the following we report on the application of this procedure in the
development of a nonlinear discretization for implicit LES.
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2 A Subgrid-Scale Modeling Environment for ILES

For brevity of notation, the following summary is given for the one-dimensional
case and a generic nonlinear transport equation

∂tu + ∂xF (u) = 0 . (1)

Following Leonard [16] the discretized equation is obtained by convolution
with a homogeneous filter kernel G and the subsequent discretization of the
filtered equations

∂tuN + G ∗ ∂xFN (uN ) = −G ∗ ∂xτSGS , (2)

where the overbar denotes the filtering u = G∗u, and the subscript N indicates
grid functions obtained by projecting continuous functions onto the numerical
grid xN = {xj}. This projection corresponds to an additional filtering in
Fourier space with a cut-off filter at the Nyquist wave number ξN = π/h,
where h is a constant grid spacing.

In the following we consider a top-hat filter. For this filter kernel, the
evaluation of Eq. (2) on a computational grid corresponds to Schumann’s
finite-volume discretization [20]. The subgrid-stress tensor

τSGS = F (u)− FN (uN ) . (3)

originates from the grid projection of non-linear terms and has to be ap-
proximated by a subgrid-scale model for closing Eq. (2). Explicit SGS models
provide approximations or estimations of the unclosed SGS terms which are
computed explicitly during time advancement [19, 17]. Most explicit SGS
models are based on sound physical theories but were derived without refer-
ence to a computational grid and without taking into account a discretization
scheme. Solved numerically, however, the discrete approximation of the model
interferes with the truncation error

GN = G ∗ ∂xFN (uN )− G̃ ∗ ∂̃xF̃N (ũN ) (4)

of the underlying discretization scheme, where a tilde indicates the respective
numerical approximation. For example, the unfiltered, i.e. continuous, solution
u is unknown in an LES. However, an approximation ũN of the grid function
uN can be obtained from uN by regularized deconvolution [4, 22]. Hence, the
solution uN obtained with the discrete operators does not satisfy Eq. (2), but
rather a modified differential equation (MDE)

∂tuN + G ∗ ∂xFN (uN ) = GN . (5)

The numerical truncation error can act as an implicit SGS model. Particularly,
an explicit SGS model is resembled if the filtered divergence of the model SGS
tensor is approximated
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GN ≈ −G ∗ ∂xτSGS . (6)

A suitable framework for implicit LES is available by the finite-volume
method, implying reconstruction or deconvolution of the unfiltered solution
at cell faces and the approximation of the physical flux function by a numer-
ical flux function. With the Adaptive Local Deconvolution Method (ALDM)
numerical discretization and SGS modeling are merged entirely [1, 14, 15, 13].
This is possible by exploiting the formal equivalence between cell-averaging
and reconstruction in finite-volume discretizations and top-hat filtering and
deconvolution in SGS-modeling. A local reconstruction of the unfiltered solu-
tion is obtained from a solution-adaptive combination of Harten-type decon-
volution polynomials

p̃∓k,r(xj±1/2) =
k−1∑
l=0

c∓k,r,l(xN )uj−r+l, (7)

where half-integer indices denote reconstructions at the cell faces. The grid
dependent coefficients c∓k,r,l are chosen such that p̃∓k,r(x) = u(x)+O

(
hk
)

[11].
Deconvolution is regularized by limiting the degree k of local approximation
polynomials to k ≤ K and by permitting all polynomials of degree 1 ≤ k ≤ K
to contribute to the approximately deconvolved solution

ũ∓(xj±1/2) =
K∑

k=1

k−1∑
r=0

ω∓
k,r(uN )p̃∓k,r(xj±1/2). (8)

Adaptivity of the deconvolution operator is achieved by dynamically weighing
the respective contributions by ωk,r(uN ). A suitable consistent numerical flux
function,

F̃j±1/2 = F

(
1
2

(
ũ−

j±1/2 + ũ+
j±1/2

))
− σj±1/2

(
ũ+

j±1/2 − ũ−
j±1/2

)
, (9)

operating on the approximately deconvolved solution provides secondary reg-
ularization. σj±1/2 is a shift-invariant functional of uN , for details refer to
[1, 14]. The solution-adaptive stencil-selection scheme and the numerical flux
function contain free parameters that can be used to adjust the spatial trun-
cation error of the discretization.

3 Modified-Differential-Equation Analysis

The MDEA is based on the assumption that the discrete unfiltered solution in
a neighborhood of xi can be represented by local approximation polynomials
of degree K up to K ≤ L. The polynomial approximation of the filtered
solution is



Design of Physically Optimized Discretizations 53

ui
.=

L−1∑
μ=0

ǔ
(μ)
i

Mμ(xi)
(μ)!

, (10)

where ǔ
(μ)
i stand for the order μ derivatives of the approximation polynomial

ǔ of u at xi. Mμ is the μ-th moment of the filter kernel

Mμ(xi) =

+∞∫

−∞

(x− xi)μG(x− xi)dx . (11)

The top-hat filter kernel gives

Mμ(xi) =

⎧⎨
⎩

0 , μ odd
hμ

i

2μ(μ + 1)
, μ even.

(12)

Taking the order ν derivatives on both sides of Eq. (10), we obtain

u
(ν)
i

.=
L−1∑
μ=ν

ǔ
(μ)
i

M(μ−ν)(xi)
(μ− ν)!

, (13)

for ν = 0, . . . , L− 1. The set of Eq. (13) can be written in matrix form
⎡
⎢⎢⎢⎣

ui

u′
i
...

u
(L−1)
i

⎤
⎥⎥⎥⎦ = C ·

⎡
⎢⎢⎢⎣

ǔi

ǔ′
i
...

ǔ
(L−1)
i

⎤
⎥⎥⎥⎦ , (14)

where the coefficient matrix C is upper triangular and diagonally dominant
[11]. Solving (14) for ǔ(ν)

i , ǔN is obtained in terms of the first L−1 derivatives
of uN . This series expansion for ǔN can be inserted as approximation for uN

when evaluating the truncation error of a numerical method.
By an analysis of the modified differential equation of a discretization

scheme an implicit SGS model can be determined analytically. It can be ob-
served that the Taylor series expansion of the truncation error of nonlinear
discretization schemes contains functional expressions which are similar to ex-
plicit SGS models. For some discretizations a given explicit SGS model can
be matched by adjusting parameters, as demonstrated in the following.

An analysis of ALDM for the 1-D Burgers equation has shown that by
adjusting free parameters appropriately the Smagorinsky SGS model can be
recovered implicitly: The viscous Burgers equation, where the flux

F (u) =
1
2
u2 − ν∂xu (15)

is to be substituted in Eq. (1), is a popular 1-D model for the 3-D Navier Stokes
equations. The Smagorinsky model formulated for the Burgers equation is
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G ∗ ∂xτSmag = −2CSh
2 |∂xu| ∂2

xu . (16)

MDEA of the initial-value problem has been performed for the semi-discre-
tization on equidistant meshes [1]. This is consistent with the spatially-filtered
interpretation of the LES equations, i.e., the time step being sufficiently small
for the spatial truncation error to be dominant. Model parameters can be
identified in such a way that the truncation error GN follows as

GN = 2CS

∣∣∣∣∂u∂x
∣∣∣∣ ∂

2u

∂x2
h2 − 1

6
CS

∣∣∣∣∂u∂x
∣∣∣∣ ∂

4u

∂x4
h4 +O

(
h6
)
. (17)

The resulting implicit formulation matches with the explicit model up to order
O(h3). Note that an interpretation of the higher order terms is difficult for
coarse grid resolutions and non-smooth solution.

For the 3-D incompressible Navier-Stokes equations, however, MDEA
based on Taylor series expansion turned out to be intractable since the ana-
lytical expressions become extremely lengthy. Another reason is the difficulty
in solving the pressure-Poisson equation analytically.

Hickel et al. [14] have therefore resorted to an a-posteriori analysis of the
spectral numerical viscosity of ALDM in numerical simulations of freely de-
caying homogeneous isotropic turbulence in the limit of vanishing molecular
viscosity. Alternatively to adjusting the model parameters for a given ex-
plicit SGS model one can try to find systematically the SGS model that gives
the best statistical representation of the SGS effects on the filtered scales.
Provided that the grid resolution is sufficient, turbulent subgrid scales are be-
lieved to obey general properties such as a Kolmogorov scaling in the inertial
wavenumber range. This can be exploited for determining optimal model pa-
rameters. Optimization target is a canonical reference flow configuration that
represents the essential properties of 3-D Navier–Stokes turbulence.

Using Fourier transforms, the modified differential equation of a generic
discretization of the incompressible Navier-Stokes equations can be written in
spectral space as

∂tÊ(ξ)− T̂N (ξ) + 2νξ2Ê(ξ) = Ĝ−1(ξ)û∗
N (ξ) · ĜC(ξ) (18)

The hat denotes the Fourier transform, i is the imaginary unit, and ξ is the
wave-number vector. On the represented wave-number range |ξ| � ξN the
kinetic energy of the deconvolved velocity is

Ê(ξ) =
1
2
ûN (ξ) · û∗

N (ξ). (19)

The nonlinear energy transfer T̂N (ξ) is the Fourier transform of the nonlinear
term. The right-hand side of this equation is the numerical dissipation

εnum(ξ) = Ĝ−1(ξ)û∗
N (ξ) · ĜC(ξ) (20)
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implied by the discretization. Now we investigate how to model the phys-
ical subgrid dissipation εSGS by εnum. An exact match between εnum and
εSGS cannot be achieved since εSGS involves interactions with non-represented
scales. For modeling it is therefore necessary to invoke theoretical energy-
transfer expressions. Employing an eddy-viscosity hypothesis the subgrid-scale
dissipation is εSGS(ξ) = 2νSGSξ

2Ê(ξ) . Similarly, the numerical dissipation
can be expressed as

νnum(ξ) =
εnum(ξ)

2ξ2Ê(ξ)
. (21)

In general νnum is a function of the wavenumber vector ξ. For isotropic turbu-
lence, however, statistical properties of (18) follow from the scalar evolution
equation for the 3-D energy spectrum

∂tÊ(ξ)− T̂N (ξ) + 2νξ2Ê(ξ) = εnum(ξ). (22)

For a given numerical scheme νnum(ξ) can be computed from

νnum(ξ) = − Ĝ−1(ξ)

2ξ2Ê(ξ)

∫

|ξ|=ξ

û∗
N (ξ) · ĜN (ξ)dξ (23)

Convenient for our purposes is a normalization by

ν+
num(ξ+) = νnum

(
ξNξ+

)√
ξN/Ê(ξN ), with ξ+ =

ξ

ξN
. (24)

For an evaluation of the numerical viscosity we consider freely decaying ho-
mogeneous isotropic turbulence in the limit of vanishing molecular viscosity
which is a critical test case for predicting the proper SGS dissipation. Filtered
and truncated highly resolved LES data are used as initial condition. Trial
computations are advanced for a small number of time steps and followed by
an a-posteriori analysis of the data that allows to identify the spectral nu-
merical viscosity of the discretization [14]. Isotropic decaying turbulence does
not lose memory of the initial data. To cope with this problem the spectral
numerical viscosity from 10 uncorrelated realizations is evaluated and aver-
aged. Each realization is advanced by one time step so that computational
cost amounts to 10 time steps per evaluated numerical viscosity.

This methodology can be applied to any discretization scheme, only a de-
aliased spectral discretization will yield ν+

num ≡ 0. Figure 1 shows the spectral
numerical viscosities of standard finite difference (FD) methods. Central dif-
ferencing methods are usually energy conserving, however, their dispersive
errors re-distribute the kinetic energy between the scales. In average, energy
is transferred from medium to large wavenumbers. For most wavenumbers the
spectral numerical viscosity of the considered central FD schemes is positive.
However, a large negative peak is found at the cutoff wavenumber. Negative
dissipation at high wavenumbers results in an energy accumulation. This can
lead to numerical instability unless the method is stabilized by adding artificial
dissipation. These results are consistent with Ghosal’s analysis [9].
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Fig. 1 Spectral numerical viscosity of −−−−−−− de-aliased spectral scheme, ·−·−·−
2nd order central FD, −··−··− 4th order central FD ◦ EDQNM theory [3]

4 Optimization of Discretization Coefficients

The assumption of an inertial-range spectrum ranging to infinity and allows
for a direct comparison of the numerical dissipation with analytical expres-
sions for the SGS dissipation spectrum. The concept of modeling nonlinear
interactions in turbulence by a wavenumber-dependent spectral eddy viscosity
was first proposed by Heisenberg [12]. For high Reynolds numbers and under
the assumption of a Kolmogorov range Chollet [3] proposes the expression

ν+
Chollet(ξ

+) = 0.441C−3/2
K

(
1 + 34.47e3.03ξ+

)
(25)

as best fit to the exact solution. A set of discretization parameters is evalu-
ated by the root-mean-square difference between the spectral numerical vis-
cosity and the spectral eddy viscosity of EDQNM. The employed automatic
optimization algorithm follows an evolutionary strategy in which natural bi-
ological processes are modeled by simple stochastic search methods. A set of
free parameters is considered as genome of a living individual. The algorithm
operates on a population of individuals and applies the survival-of-the-fittest
principle of the Darwinian theory of evolution. At each generation, a new
set of individuals is created by modeled natural processes, such as selection
according to the level of fitness, recombination, and random mutation. This
process leads to the evolution of a population of individuals that is better
adapted to a cost function than the population that it was created from.

Since this algorithm works on populations instead of single individuals, the
search is performed in an efficient parallel manner. The numbers of time-steps
and realizations for evaluation of the cost function are chosen as a compro-
mise between accuracy and computational feasibility. Surely, they are less
than what would be necessary to completely remove the effect of stochastic
fluctuations. Thus the resulting cost function is not smooth but exhibits resid-
ual fluctuations. Unlike standard gradient-approximation based optimization
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Fig. 2 (a) Numerical viscosity of ALDM with optimized parameters compared to
the prediction of turbulence theory. −−−−−−− LES with N = 32, −−−− LES with
N = 64, ◦ EDQNM theory [3]. (b) Instantaneous 3D energy spectra for LES of

decaying isotropic turbulence. −−−−−−− ALDM; ·········· Ê ∼ ξ−5/3

methods, evolutionary algorithms can handle such non-smooth cost functions
[2]. For further details the reader is referred to [14] and the references therein.

5 Optimized Eddy Viscosity Model

The spectral eddy viscosity of the implicit model with the optimized param-
eter set yields an excellent match with theoretical predictions as shown in
Fig. 2a. It exhibits a low-wavenumber plateau at the correct level and re-
produces the typical cusp shape up to the cut-off wavenumber at the correct
magnitude. ALDM nonlinearly combines interpolants from several central, up-
wind, and downwind stencils. The truncation error therefore is not purely dis-
sipative. The probability density function of the numerical viscosity exhibits
significant anti-dissipative contributions which represent backscatter, see [14].

The choice of parameters has been validated for LES of decaying homoge-
neous isotropic turbulence with a Kolmogorov spectrum throughout all rep-
resented wavenumbers in the limit Re −→ ∞. The energy spectrum decays
self-similarly while preserving the ξ−5/3 law up to the largest wavenumbers,
see Figure 2b. The observed decay rate of the resolved turbulent kinetic en-
ergy ε = ∂K/∂t is proportional to the turbulent kinetic energy K to the power
of 3/2 as predicted by the scaling ε ∼ K3/2L−1 for self-similar decay of an
inertial-range spectrum, i.e. L = const. This agreement is not surprising but
confirms the parameter calibration for this particular case at large Reynolds
numbers.

For a more demanding test, we present results from a temporal simulation
of a transitional wall-bounded flow. The solution is initialized at time t = t0
as a laminar Blasius boundary-layer profile with thickness δ and free-stream
velocity U∞, superimposed with low-amplitude white-noise fluctuations. This
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initial disturbance is expected to grow during the simulation and eventually
leads to transition of the flow to a turbulent state. Laminar-turbulent tran-
sition is one of the most demanding test cases for LES. When white noise is
used, most energy is injected into decaying modes and only a low percentage
of the disturbance excites the instability modes of the laminar flow. For the
onset of transition the SGS model must not affect the growth and amplifica-
tion of these instable modes. Most eddy-viscosity SGS models do not satisfy
this requirement without ad hoc modifications.

The computational box has the extents 48δ×124δ×128δ and is discretized
with 48 × 96 × 256 cells in streamwise × wall-normal × spanwise directions,
respectively. A no-slip condition is imposed at the wall and the free-stream
interface is modeled by a decay condition. Periodic boundary conditions are
imposed in streamwise and spanwise direction. The large spanwise extent of
the computational domain was chosen in order to improve the accuracy of
turbulence statistics that are computed from instantaneous snapshots using
spatial averaging. Figure 3a shows the friction coefficient Cf = 2U2

τ /U
2
∞ for

a temporal LES using ALDM. During the growth of the laminar boundary
layer the friction coefficient follows the analytical solution Cf ∼ (Ret)−1/2,
where the Reynolds number is defined as Ret = tU2

∞/ν. One can clearly see
that the boundary layer undergoes laminar-turbulent transition. Eventually
the friction coefficient follows the turbulent law Cf ∼ (Ret)−1/5. The evo-
lution of the shape factor H12 is shown in Fig. 3b. The prediction of our
temporal LES with ALDM is in good agreement with DNS by Spalart [21] in
the later turbulent stages. Results from LES and DNS do not match for the
Reynolds number Reδ∗ = 500 (Reδθ

≈ 300). Spalart’s DNS predict turbulent
velocity profiles that can hardly be obtained by natural transition at these
Reynolds number. In the turbulent regime the performance of the implicit
SGS model is evaluated by comparing profiles of mean velocity and Reynolds
stresses with DNS data. Figure 4 shows results for the mean velocity profile
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Fig. 4 Profiles of mean velocity and Reynolds stresses for turbulent boundary layer
flow at Reδθ = 1410. −−−−−−− present LES, symbols denote reference DNS

and Reynolds stresses from LES and DNS at Reδθ
= 1410. ALDM apparently

predicts the turbulence statistics correctly. It should be noted that the pre-
diction of Reynolds-stress anisotropy by ALDM is better than by common
explicit eddy-viscosity models [15].

6 Conclusion

We have presented an approach for the design of physically optimized dis-
cretization methods for LES with implicit SGS model. The resulting method
is based on the main components of finite-volume discretizations and allows
for a full merge of discretization and subgrid-scale model. Although model
parameters are determined by isotropic turbulence in the limit of infinite
Reynolds number we have shown that the resulting model can be applied also
to physically complex flows.
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Abstract. This study investigates the capabilities of various recent subgrid-scale
(SGS) models (the so-called “multiscale” models) for large-eddy simulation (LES),
used either in a vortex-in-cell (VIC) method or in a pseudo-spectral (PS) method,
and their applicability to the simulation of decaying homogeneous isotropic turbu-
lence (HIT) in the limit of very high Reynolds number (i.e. LES on a large grid
and where the molecular viscosity dissipation is negligible compared to the SGS
dissipation). The proper coefficient value for each model investigated was obtained
by a calibration performed in an earlier study. Various large grid resolutions (1283,
2563 and 5123) are used to compare and to indeed obtain the asymptotic spectral
behavior of each model. We are then able to emphasize the behavior of the models,
that is not necessarily observable in “small” LES (i.e. in LES at moderate Reynolds
number and/or using a smaller mesh). In particular, we show that the multiscale
models perform significantly better than the Smagorinsky model: a much wider in-
ertial range is obtained.

Keywords: Large-eddy simulation, Subgrid-scale modelling, Multiscale modelling,
High Reynolds number flows, Spectral behavior, Effective viscosity, Hyper-viscosity,
Decaying homogeneous isotropic turbulence, Lagrangian methods, Vortex particle
method, Vortex-in-cell method, Spectral method

1 Numerical Methods

The governing equations are the Navier-Stokes equations for incompressible
flows with constant viscosity and supplemented by a subgrid scale model:

∇ · u = 0 (1)
∂u
∂t

+ (u · ∇)u = −∇P + ν∇2u +∇ · τM , (2)

where u is the LES velocity, P is the reduced pressure, ν is the kinematic
viscosity, and τM is the SGS stress tensor model. We present hereafter the
two methods that we use to solve these equations.
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1.1 Pseudo-Spectral Solver

The solver used here is based on the Fourier-Galerkin pseudo-spectral (PS)
methodology. The time integration of equation (2) is carried out in spectral
space using a technique in which the convective and subgrid scale model terms
are marched explicitly using the 3rd order Williamson scheme. The nonlinear
term is evaluated using a pseudo-spectral algorithm and the dealiasing is
done using a phase shift procedure as explained in [2], which ensures energy
conservation. The divergence-free character of the velocity field is ensured by
reprojection, performed in spectral space.

1.2 Vortex-in-Cell Code

The equations are solved in their vorticity-velocity formulation:

Dω

Dt
−∇ · (uω) = ν∇2ω +∇ ·TM (3)

with ω = ∇× u the LES vorticity field and TM the SGS model. The numer-
ical solution of (3) is obtained using the vortex-in-cell (VIC) approach. The
vorticity field is represented by regularized vortex particles:

ωσ(x, t) =
∑

p

αp(t)
1

(
√
π σ)3

exp
(
−|x− xp(t)|2

σ2

)
, (4)

with αp =
∫

ω dx = ωp h
3 the strength of particle p, xp its position, h

the discretization size (grid size, also used for particle redistribution), and
σ the regularization parameter. Interpolations between particles and grid, as
well as particle redistribution, are all done using the M ′

4 scheme. The vector
streamfunction ψ is obtained by solving the Poisson equation ∇2ψ = −ω
on the grid using Fishpack [1]. The velocity field (needed for convection and
stretching) is then obtained from u = ∇×ψ, using 4th order finite differences
(FD). The convective part is done using the Lagrangian approach: dxp/dt =
u(xp); this ensures good convection (i.e., negligible dissipation and dispersion
errors). The time variation of the particle strengths (i.e., both the vorticity
stretching and the dissipation terms) is evaluated on the grid, using FD. The
global time marching procedure is carried out using the Leap Frog scheme
for the convection and the Adams-Bashforth scheme for the diffusion. Finally,
the divergence-free character of the vorticity field is ensured by reprojection
of the discrete vorticity field, which also requires solving a Poisson equation.
The details of the method are presented in [5, 14, 4].

2 Subgrid Scale Modeling

We classify the multiscale subgrid scale models in two sets, according to the
spectral content of the field on which they are acting:
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• Type I models (“x-complete” models): models acting on the complete
LES field. The SGS stress is then modelled using τM

ij = 2 νsgsSij with
Sij = (∂ui/∂xj + ∂uj/∂xi) /2 the strain rate tensor. For the vorticity for-
mulation, we use TM

ij = 2 νsgsQij with Qij = (∂ωi/∂xj + ∂ωj/∂xi) /2.
• Type II models (“x-small” models): models acting on a “small-scale” LES

field. The SGS stress is then modelled using τij = 2 νsgs S
s
ij with Ss

ij the
strain rate tensor of the small scale field. For the vorticity formulation, we
use QS

ij .

The small-scale field is obtained by using the compact (stencil 3) tensor-
product discrete filter, and that is iterated n times to produce an order 2n
filter [8, 3]:

us(n)
= u− u

(n)
(5)

with
u

(n)
=
(
I −

(
−δ2

x/4
)n
)(

I −
(
−δ2

y/4
)n
)(

I −
(
−δ2

z/4
)n
)
u (6)

where δ2
xfi,j,k = fi+1,j,k − 2fi,j,k + fi−1,j,k. In Fourier space, the filtered field

is:

û
(n)(k) =

(
1− sin2n

(
kx hx

2

))

(
1− sin2n

(
ky hy

2

))

(
1− sin2n

(
kz hz

2

))
û(k) (7)

This classification can be further extended according to the field on which
νsgs is evaluated (complete or small). The LES length scale is here defined as:
Δ = (hxhyhz)1/3. The constants used for the different models were carefully
calibrated on HIT at high Reynolds number.

2.1 Type I Models

We first present the “x-complete” models. The classical Smagorinsky (SMAG)
model is the most common “complete-complete” model:

νsgs = CS Δ2 ( 2SijSij )1/2 (8)

with CS = 0.027. A second model is the FSF model [6] (a “small-complete”
model). Here, the subgrid viscosity is obtained from the “filtered structure
function” F s(n)

2 :

νsgs = C
(n)
F Δ

√
F s(n)

2 , (9)

where

F s(n)

2 =
〈
‖us(n)

(x + x′)− us(n)
(x) ‖2

〉
|x′| = Δ

. (10)
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The coefficient for n = 1 is C
(1)
F = 0.078. The structure function is evaluated

using the nearest neighbors (33 = 27) values. Note that, in the original FSF
model (as investigated here), the small-scale field us(n)

is obtained by recursive
application (n times) of the 2nd order (i.e., stencil 3 and cross-based) FD
Laplacian:

us(n)
=

(
−Δ2

4
∇2

)n

u . (11)

It could also be obtained using the compact tensor-product filter (Eqs.(5, 6,
7)). A third model is the Filtered Smagorinsky model (a “small-complete”
model):

νsgs = C
(n)
S2

Δ2 ( 2Ss
ijS

s
ij )1/2. (12)

The coefficient for n = 1 is C(1)
S2

= 0.045.

2.2 Type II Models

We now present the “x-small” models, thus those where the SGS viscosity is
applied on the small-scale field (us or ωs depending on the formulation for the
Navier-Stokes equations). The first “complete-small” model is the “regular-
ized” version, here using the tensor product discrete filter, of the “variational
multiscale” model (VM) of [7], used in [8]. The RVM model was also further
proposed and tested by [13] and also by [11, 12]. We here use

νsgs = C
(n)
R Δ2 ( 2SijSij )1/2 , (13)

with C
(1)
R = 0.036 and C

(3)
R = 0.060. The second model considered is the

regularized version of the “small-small” variational multiscale model. We here
use

νsgs = C
(n)
R2

Δ2 ( 2Ss
ijS

s
ij )1/2 (14)

which is here noted RVMs. This model was proposed and evaluated by [13]
and by [11, 12]. The coefficient for n = 1 is C(1)

R2
= 0.066.

2.3 High Order Hyper-Viscosity Model

The hyper-viscosity (HV) SGS model is used solely with the PS code, and as
a basis for comparisons to the multiscale models. It reads

τM
ij = (−1)p∇2p(2 νh Sij). (15)

On an uniform grid and using a global time scale T0 in the SGS viscosity (for
simplification), this leads to:

∇ · τ̂M (k) = −C(p) 1
T0

(kh)2(p+1)û(k). (16)

In the present study, we use a very high order HV model (p = 7).
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3 Results on HIT

We are interested in LES of decaying HIT in the limit of very high Reynolds
number (i.e. simulations where the molecular viscosity dissipation is negligible
compared to the SGS dissipation). Thus, we deliberately run LES with ν set
to zero. The results presented were computed using the VIC and the PS codes.
The initial condition was build following the algorithm described by [10]. This
initial field then evolved using LES. For the investigations using the VIC code,
the following SGS models are used: SMAG, FSF (with n = 1), RVM (with
n = 1 and n = 3) and RVMs. The models investigated using the PS code
are the SMAG model, the RVMs (with n = 3) model and the high order HV
model.

Figure 1 shows the obtained energy spectra for a 1283 grid (also time-
averaged between t = 10 and 40, i.e. when the turbulence is statistically
converged). We observe that the Type II models with n = 3 provide the
broader inertial range (i.e., with k−5/3 behavior). The width of this captured
inertial range decreases with the order of the filter used to obtain the small-
scale field (compare RVM with n = 1 to RVM with n = 3). In opposition,
the SMAG and the FSF models do not exhibit any inertial range on such
a 1283 grid. The same conclusion holds for the Filtered Smagorinsky model,
even though not shown here. Nevertheless, all spectra are clearly altered by
a “bump-like” behavior at the medium to high wavenumbers, though to a
lesser extent for the Type II models using high order (n = 3) filters. This non-
physical energy accumulation is present because the shape of the dissipation
spectra of the SGS models is never exactly the required one. Indeed, since
any SGS model must dissipate, it can never lead to an inertial range obtained
over all medium to high wavenumbers of the LES (recall that an inertial range
corresponds to an energy cascade without dissipation). Hence, one always
obtains the “bottleneck” effect with energy accumulation (bump) followed
by dissipation. However, the behavior is much improved when the Type II
models are used. As they act only at the small scales, their influence on the
large scales is reduced and allows to capture a k−5/3 inertial range on part of
the LES.

This conclusion is also valid for the spectrum obtained using the high order
HV model: it provides an inertial range as broad as the Type II models with
n = 3 (even a bit broader), yet the “bump” is more pronounced. Our result
compares well with [9] who also shows the presence of the “bottleneck” effect
in the energy spectra when a high order HV model is used.

We also investigate the asymptotic behavior of the models when perform-
ing LES on larger and larger grids, see Fig. 2. We consider the SMAG model,
the RVMs model and the high order HV model, and we compare the spec-
tra obtained using the PS code and higher resolutions. Such LES has indeed
reached its “asymptotic behavior”, with self-similar obtained spectra. We also
confirm the unequivocal presence of the “bump-like” behavior in all models.
As expected, the k−5/3 inertial range becomes broader as the grid is taken
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Fig. 1 Compensated and normalized energy spectra for a 1283 grid (also time-
averaged between t = 10 and 40; the curves are shifted vertically by 0.5 to better
distinguish them): (1) using the VIC code: SMAG (dash), FSF (dash-dot), RVM
with n = 1 (dot) and RVM with n = 3 (solid); (2) using the PS code: SMAG (dash
with bullets), high order HV (dash-dot with bullets) and RVMs with n = 3 (solid
with bullets)

larger. For instance, the RVMs model on a 2563 grid is able to obtain an in-
ertial range for 4 ≤ k ≤ 20 (to be compared to a range 4 ≤ k ≤ 8 only for the
SMAG model).

4 Conclusions

The results obtained by performing LES of HIT allow to highlight the good
spectral behavior of the multiscale subgrid models: those acting on a “small”
field. One of the original aspect of this work is that all LES were performed
on large grids and at very large Reynolds number, allowing to obtain the
asymptotic behavior of each model. The comparisons show that the RVM
and RVMs models perform significantly better than the Smagorinsky model:
a much wider inertial range is obtained. It is also found that, with the same
SGS model, the VIC code produces spectra that are very similar to those
obtained by the reference PS code (see, e.g., the results with the SMAG model
in Fig. 1). Recall that the VIC code also has very good qualities: essentially
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Fig. 2 Compensated and normalized energy spectra when using larger grids (PS
code at t = 20; the curves are shifted vertically by 0.125 to better distinguish them):
RVMs with n = 3 on 1283 and 2563 grids (solid), SMAG on 1283 and 2563 grids
(dash), high order HV on 1283, 2563 and 5123 grids (dash-dot)

no dispersion and very little numerical dissipation (the PS code has none, of
course). The issue of the code numerics interacting with the SGS model is
thus of lesser importance in VIC than in other numerical methods.
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Abstract. The purpose of this paper is to investigate and validate an alternative
subgrid model to be used in Large-Eddy Simulations, based on an advective formula-
tion. Rather than modeling the subgrid tensor that appears in the LES formulation
as is commonly done, we directly model the subgrid force vector, imposing two basic
requirements. First, it must act only on the smallest scales. Second, it must be of an
advective nature, which means it must have a preferred direction aligned with the
mass flux. The results for two benchmark test cases show that this approach can
successfully represent the effect of the small scales on the resolved ones, while guar-
anteeing numerical stability and greater robustness in adverse mesh environments,
when compared to some traditional eddy-viscosity based models.

Keywords: Turbulence, Large-eddy simulations, Subgrid model

1 Introduction

The vast majority of functional subgrid models currently employed in LES [1]
[2] makes use of a diffusive formulation based on the eddy-viscosity assump-
tion. This supposes that the tensor is aligned with the symmetrical part of
the velocity gradient, which is generally not true. For this class of subgrid
model, an aligned subgrid tensor is obtained by multiplying the strain rate
by a scalar, known as eddy-viscosity, which may be derived from a character-
istic length and a characteristic velocity. The characteristic length is readily
available from the mesh spacing, and usually is taken as the cubic root of the
volume of the cell – the control volume in the Finite Volume Method (FVM)
case. While this seems appropriated for isotropic regular meshes, it is easy to
understand its limitations when dealing with highly anisotropic ones.
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Since the subgrid term to be modeled arises from an algebraic manipu-
lation of an advective term, the objective of this paper is to investigate and
validate an alternative subgrid model, based on an advective formulation. In
such approach, instead of modeling the tensor and take its divergence, as
∇·τSGS , one aims directly at the resulting subgrid force, f = ∇·τSGS, which
has only three components. This force is built in a way to comply with two
basic principles: as a LES subgrid model, it must act only in the smallest
scales, and, following the motivation exposed in the above paragraph, it must
be of advective nature, which means it must have a preferred direction, so
that smallest structures aligned with the mass flux are eliminated first, or at
least faster.

The idea of representing the subgrid force instead of the subgrid tensor
is not new, and has been explored by several authors in the past [3], [4] and
[5]. Carati and Wray [5], for instance, derived a transport equation to model
the evolution of this subgrid force. In the present work, a direct formulation
is proposed instead.

This paper is structured as follows: Section 2 presents the main motivations
for new proposal, as well as the description of the advective subgrid model.
The results for two benchmark test cases are presented and analyzed in 3. In
the first set of tests, the performance of the model is tested employing both
isotropic and anisotropic meshes to predict the Homogeneous Isotropic Tur-
bulence (HIT) in a “periodic box”. The anisotropic tests are important since,
in practical situations with more realistic cases, an isotropic mesh cannot be
afforded. The use of anisotropic meshes in these benchmark tests allowed more
realistic cases to be covered, without adding further complexity to the test
problem geometry and physics. A second set of tests involves turbulent chan-
nel flows, where the mesh concentrates in the proximity of the walls. In this
later case, we also explore mesh spacing variations in the streamwise direction.

This new approach has been implemented on top of an opensource object-
oriented framework [6]. The traditional models used throughout this work
are those readily available from OpenFOAM, version 1.4. OpenFOAM source
code is publicly available if further implementation detail is sought [7].

2 Subgrid Model

The Navier-Stokes and continuity equations for incompressible flows are:

∂u
∂t

+∇ · (uu) = −∇p + ν∇2u ; ∇ · u = 0 , (1)

with u the velocity, p = P/ρ the modified pressure, which incorporates the
fluid density ρ, and ν the kinematic viscosity.

To reduce the number of degrees of freedom of the original transport equa-
tions, the Large-Eddy Simulation (LES) method employs a spatial filtering
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operator to select the largest and most energetic structures to be computed,
leaving only the small eddies to be modeled [8].

The filtered transport equations can be written as,

∂u
∂t

+∇ · (uu) + εcom +∇ · τSGS = −∇p + ν∇2u, ∇ · u = 0 , (2)

where u is the filtered velocity, and p the filtered modified pressure. The
commutative error, εcom, often neglected, is a consequence of commuting the
filtering process with a spatial derivative operator. The subgrid tensor, τSGS,
is the result of commuting the filtering with the outer product (uu). A closed
expression can not be found for this subgrid tensor, and hence it must be
separately modeled. In order to prevent the artificial accumulation of energy
in the smallest modes in numerical simulations, the eddy-viscosity approach
models the tensor τSGS as

τSGSij −
1
3

τSGSkk δij = −2 νSGS Sij ; Sij = 0.5
(
∂ui

∂xj
+

∂uj

∂xi

)
, (3)

where νSGS is the subgrid viscosity, and Sij is the filtered strain rate.
In the particular case of Finite Volume Method (FVM), the filtering oper-

ation may be conveniently confused with the volume integral over the control
volume. Therefore, no further filtering is needed, and this process is said to
be implicit, or embedded in the FVM.

2.1 Motivation for the Advective Formulation

In eddy-viscosity models a dissipative term is added to the transport equations
with the purpose of eliminating or damping the small turbulent structures,
which would otherwise be fed and amplified by the energy cascade. As an
alternative idea to the widely accepted Boussinesq hypothesis (Eq. 3), we
propose a new SGSM approach, in which we enforce the subgrid damping by
adding an additional force f = ∇ · τSGS to the transport equations. Instead
of finding an expression for τSGS and adding its divergence to the Navier-
Stokes equation, we directly derive the force f such that the smallest modes
supported by the mesh are severely damped, while those with twice or more
than twice their wavelength are almost or completely untouched.

A potentially advantageous effect of damping small modes is that the re-
sulting discrete dynamic system is more robust and less prone to numerical
instability. Generally, LES practitioners employ non-dissipative central differ-
ence schemes to calculate derivatives, avoiding other more stable approaches
like upwind methods. Since instability issues are often related to constraints
not allowing the use of a regular mesh, the above mentioned effect might prove
handy, allowing more flexibility in mesh design. In fact, the methodology pre-
sented here was also tested in more stringent mesh environment presenting
high stretching ratios [9] with very good results and no stability issues.
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2.2 Advective Formulation Methodology

The methodology is illustrated on a representative yet simplified problem,
which is the 1-D transport of a passive scalar field by a pure advection obeying
the equation:

∂φ

∂t
+ u · ∇φ + fφ = 0 , (4)

where fφ is the artificial “force” 3 to be derived, for a general scalar variable
φ. Later, the methodology will be extended to the more interesting case of a
3-D vector field, where φ represents each of the velocity components in a full
Navier-Stokes equation.

The first step towards the derivation of a force capable of selectively damp-
ing only the smallest modes supported by the mesh is the identification of a
fundamental difference between these modes, hereby referred to as undesired
or cut-off modes, and the larger modes. A possible way to distinguish them is
through the evaluation of the projected gradients of the transported variable
φ, at the faces of a control volume. If A and B are two adjacent control volume
centroids sharing a common face F , the gradient at the cell-center A can be
calculated using the Gauss theorem as

(∇φ)A =
1
∀A

NA∑
i=1

φi SFi
, (5)

where ∀A is the volume of the cell, NA is the number of faces of the control
volume A, φi is the transported variable evaluated at face i, and SFi

is a
vector orthogonal to face i, pointing outwards from the cell, with magnitude
equal to the face area.

For the projection of the gradient onto the line segment AB, at the face
F , two possibilities are available: it can be obtained from the interpolations
of the gradients at the two neighbor cell centers to the face as

AB · (∇φ)avg = AB · (∇φ)A + (∇φ)B

2
, (6)

or, alternatively, from the difference of the transported variable over the dis-
tance between cell centers, so that

AB · (∇φ)n = φB − φA . (7)

Equations (6) and (7) are presented in a general 3-D form and can be used
in any topology, including unstructured meshes, where AB denotes the vector
from point A to point B. The subscripts A and B refer to the points where
gradients are evaluated whereas avg and n identify how those face gradients

3 Rigorously, fφ is not a force, unless φ has dimension of momentum.
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Fig. 1 Different Gradient evaluations for: (a) a 2nd degree polynomial mode; (b) a
cut-off mode; (c) a mode with twice the wavelength of the cut-off mode

are calculated. Additionally, an error ε∇ can be defined as the difference be-
tween the two alternative ways of evaluating the gradient projected along AB,
at the face, given by

ε∇ = AB ·
[
(∇φ)n − (∇φ)avg

]
. (8)

In the case of cell centered variables, the gradient at the centroid can
not capture the smallest modes, but the face gradient constructed from the
two neighbor’s difference can. This is why central difference based schemes
cannot detect and react to the presence of the smallest modes supported by
the mesh, leading to the well known checkered-board pattern. Those modes
are then allowed to grow and are the main source of numerical instability,
unless some form of artificial damping is provided.

Examining Fig. 1(a), it can be seen that both methods provide the same
results for a smooth mode that can be fitted by a second degree polynomial.4

On the other hand, for the fastest supported mode, as shown in Fig. 1(b),
the error ε∇ is significant and gets bigger as the amplitude of the spatial
oscillations is increased. Therefore, ε∇ is a good candidate for detecting an
undesired mode, and estimating how much energy such a mode carries. A sub-
grid force fφ proportional to ε∇ will be zero for the smooth mode (Fig. 1(a))
and non-zero for the smallest one (Fig. 1(b)). For modes whose wavelength
spans at least four control volumes (Fig. 1(c)), such subgrid force would also
be non-zero, but a way around this will be presented shortly, aiming to really
restrict its action to the very highest wavenumbers.

The suitability of ε∇ to build the force fφ can be further appreciated
by noticing that, being a gradient, it is almost in the form of an advection
term, missing only a velocity factor. The amount of attenuation this force
must provide to the variable φ can be derived with the help of Fig. 2, where
4 This is the reason why equal weights instead of linear interpolation were used in

Eq. (6). In non-regular meshes, Eq. (7) achieves the lowest truncation error at
the midpoint between A and B, in which case ε∇ = 0.
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Fig. 2 Advection of scalar field φ in a non-uniform velocity field

a piecewise linear representation of the scalar field is advected during the
interval Δt. In this figure, the fluid occupying positions A and B would have
moved to new positions A′ and B′, respectively, after the interval Δt.

With the help of Fig. 2, one can derive the decrease in φ at cell center
B, due to the advection of the piece-wise element connecting points A and
B. Supposing that, during the interval Δt, this piece-wise element is always
connecting the same fluid particles initially located in the centroids A and
B, the change in φ depends on the gradient ∇φn at its upwind face F , and
the distance traveled by these particles under advection, uAΔt and uBΔt. By
simple geometry, one can come up with an expression for Δφ in the form

fφFi
=

Δφ

Δt
= − (AB · uB) ε∇
||AB||2 + AB · (uB − uA)Δt

. (9)

where ε∇ replaces ∇φn, since the force must only complement the informa-
tion captured by the smooth interpolated gradient. Here, fφFi

is the force
associated with the centroid B, due to the influence of the upwind face Fi.

Referring again to Fig. 1, another interesting feature to be explored is that,
for the fastest mode shown in Fig. 1(b), the face gradient calculated with Eq.
(7) lies outside the range defined by the neighborhood centroid-evaluated ones,
at points A and B. This does not happen for the other modes illustrated at
Figs. 1(a) and 2(c).

Based on that, the action of the force can be restricted to just the cut-off
mode by setting ε∇ to zero whenever AB · (∇φ)n is inside the range limited
by the values of AB ·(∇φ)A and AB ·(∇φ)B . In this paper, a 20% tolerance is
allowed for the development of smallest structures, so that the force is non-zero
only when AB·(∇φ)n surpass the range defined by [AB · (∇φ)A,AB · (∇φ)B ]
extended by 20%.

The application of the above methodology to the momentum equation is
straightforward. One simply has to replace φ by the velocity vector field u.

As in Germano [2], this model is dynamic in the sense that the growth of
undesirable modes is immediately detected by the gradient error ε∇, which in
turn controls the forcing fφ in such a way as to damp these modes, without
attenuating smoother turbulent structures.
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2.3 Numerical Details

All simulations presented in this work have been performed with OpenFOAM,
which is a Finite Volume Method based framework for solving partial differ-
ential equations in continuum mechanics. All variables are stored at centroids
of the control volumes and whenever needed, face values are obtained through
a linear interpolation from adjacent cell centers. The spatial discretization of
all terms originally found in the Navier-Stokes equation results in a 2nd or-
der scheme. In particular, central differencing is employed for the non-linear
term, while the details of the added subgrid forcing was already extensively
discussed in 2.2. Time discretization is accomplished with the well known
2nd order backward differencing scheme. The Courant number has been kept
below 0.2 in all simulations presented in this paper. The velocity–pressure
coupling is achieved with the PISO [10] algorithm.

3 Results

3.1 Homogeneous Isotropic Turbulence

Statistically Steady-State of Forced HIT

The geometry consists of a unit-side cubic box with periodic conditions in
all opposite faces, and a very coarse mesh with 32 × 32 × 32 subdivisions in
each direction. A pseudo-random body force acting only on the large scales is
imposed, following Eswaran and Pope [11], injecting energy and balancing the
dissipation rate at small scales. Even with such a coarse mesh, the spectrum
of energy is extracted after the flow has reached statistic steady-state, and
compared to the theoretical −5/3 slope.

Since the primary purpose of these simulations is to evaluate the subgrid
models, two extremely high Reynolds number ReT = UrmsλT /ν, based on
the Taylor scale λT and on the velocity fluctuation Urms, were tested: ReT ≈
3 × 109 and ReT ≈ 3 × 104. Figure 3 presents the resulting spectra from
numerical simulations using the Dynamic model [2] and the new proposal (f-
LES), for the two different ReT . The expected −5/3 slope is also plotted in the
same graph. The large scale random forcing is limited to frequencies below
k/Δk = 3. It is clear that both models present very similar results, which
are in accordance to the Kolmogorov universal spectrum. Notwithstanding,
it may be argued that “f-LES” performs a little bit better in this particular
case, since its resulting slopes are closer to the theoretical value of −5/3.

Decaying Homogeneous Isotropic Turbulence

Another important behavior that turbulence simulations must be able to re-
produce is the free decaying of kinetic energy and dissipation rate, which
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Fig. 3 Spectrum of HIT in a periodic box with 323

obeys a logarithmic law during a certain period of time [12], [13]. This is ex-
plored in this subsection for the same periodic box of Section 3.1 , in which
no “pseudo-random” force is applied. The initial velocity field is chosen so
that it has a spectrum containing only large structures. As the flow evolves,
the energy stored in the largest scales is transferred to the next smaller scales
where there is still no dissipation. The total kinetic energy is thus kept con-
stant in this initial phase, until the energy reaches the Kolmogorov scales,
where dissipation takes place. At this point, the viscosity effects start to act,
damping the smallest structures. From then on, the total kinetic energy (〈K〉)
decays logarithmically. In Large Eddy Simulations, this switch from constant
to logarithm decay happens when the energy reaches the scales affected by
the subgrid model, ideally restricted to the smallest modes supported by the
mesh. That being said, the present test case is very useful when assessing how
selective subgrid models are in terms of spectrum: those who provide the least
dissipation in the initial stage, and the latest transition to logarithm decay in
the kinetic energy, are the ones that affect fewer modes in the spectrum.

Figure 4(a) shows the results for the Kinetic Energy as a function of time,
obtained from Large Eddy Simulations with two subgrid models and different
meshes. The base isotropic mesh (32 × 32 × 32) had 32 subdivision in each
direction, while the anisotropic versions (64 × 32 × 32 and 128 × 32 × 32)
improved the refinement in x-direction by a factor of 2 and 4. The curves
for the different cases have been vertically shifted for better visualization,
since all simulations started from the same initial velocity field, therefore with
the same 〈K〉. The observed energy evolution in all cases showed a similar
pattern, in close agreement to the expected physical behavior described in
above paragraphs. The rate of the decaying, however, was overestimated by
all models, probably due to the poor mesh resolution. Instead of decaying as
1/tn with n in the range [1.15, 1.45], all subgrid models are predicting a faster
decay for the turbulence kinetic energy, with n oscillating in the range [2.5, 3].
Regarding this decaying rate, no model proved superior, as they were equally
affected by the mesh coarseness.
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Fig. 4 Comparison of HIT LES behavior in isotropic and anisotropic meshes with
different models: (a) kinetic energy decaying; (b) dissipation rate decaying

From the same Fig. 4(a), one can also infer that both models were little
affected by mesh anisotropy, although it may be argued that the dynamic
model was a little more sensitive, specially from t = 1.5 to 3, when the curves
almost crossed.

The dissipation rate also obeys a logarithmic decay from the time the
energy reaches the smallest scales on. Before this point, it is clear from Fig.
4(b) that the proposed subgrid model is less dissipative than both the dynamic
and Smagorinsky models, with the latter the most dissipative of all. Since the
high frequency spectrum is empty in the beginning of the simulations and
becomes populated as time goes by, one can conclude that the Smagorinsky
model dissipates energy at larger scales when compared to the Dynamic model
and the advective forcing model, both of which act more selectively, damping
only the smallest modes.

The graphs also show a great consistency between results obtained with
meshes with different anisotropy. For the advective subgrid formulation (f-
LES), the values of 〈K〉 are almost independent of the mesh, at least until
t = 10. On the other hand, the Dynamic model showed a subtle discrepancy,
specially in the periods t = [0.1, 0.3], t = [4, 10], and t = [30, 100].

3.2 Turbulent Channel Flows

In this section, we consider the flow between two infinite plates, driven by a
pressure gradient, for which extensive Direct Numeric Simulation (DNS) data
is available [14]. In the numerical simulations, the infinite width is represented
by periodic conditions in the front and back planes, distant 2δ of each other.
The domain has a length L = 4δ in the x-direction and a width W = 2δ in the
z-direction. The inlet and outlet boundary conditions are set to be periodic in
velocity and pressure, and a uniform pressure gradient source term is added
to the incompressible Navier-Stokes equation to account for the dissipated
energy. During the simulations, this pressure gradient value is adjusted so
that the Reynolds number based on the mass flux and the channel height
(2δ) is 5600 during statistical steady-state. This corresponds to a Reynolds
number Reτ = uτδ/ν = 180, where the friction velocity is uτ =

√
τ/ρ.
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Two spatial discretizations are tested to evaluate the influence of mesh
stretching in the final solution. The first mesh (“MESH A”) consists of 40×
50 × 30 subdivisions, regularly spaced in both streamwise (x) and spanwise
(z) directions. A fixed expansion ratio from both walls towards the center, in
the y direction, is employed to better represent the different range of scales
throughout the domain. The control volume adjacent to the wall measures, in
wall units, (Δx+,Δy+,Δz+) = (18, 1.8, 12), while at halfway channel height,
the elements span (Δx+,Δy+,Δz+) = (18, 18, 12). This corresponds to an
increase of 9.6% in Δy from one control volume to its adjacent, in y-direction.

For the second mesh (“MESH B”), the same number of grid cells was
adopted for each direction, but with non-uniform streamwise discretization.
Therefore Δy+ and Δz+ are exactly the same as in MESH A, while Δx+

varies from 8.2 (in the inlet and outlet boundaries) to 33 in the middle of the
channel. This corresponds to a Δx stretching rate of 7% in the x-direction.

For each of these two meshes, simulations were performed with the
Smagorinsky [1] (“Smag”), Dynamic Smagorinsky [2] (“Dyn”) and advective
forcing (“f-LES”) subgrid models. A Van Driest wall function [15] for the sub-
grid scale length (Δ) is required in all simulations involving the Smagorinsky
model, in order to damp the eddy-viscosity as the wall is approached. Both the
Dynamic model and the model proposed here (f-LES) have, by construction,
the ability to automatically adapt the level of subgrid dissipation through-
out the computational domain, making the use of wall damping completely
unnecessary.

Profiles of first and second order statistics are extracted from the mean
field by means of a spatial average over the whole domain, in both x-direction
and z-direction. The main results are shown in Fig. 5(a)–(d), where the left
column corresponds to the numerical simulations using MESH A, regular in x-
direction, while the right column relates to those employing MESH B, irregular
in x-direction. The symmetry/antisymmetry of the profiles around y/δ = 1 is
a sign that the averaging time was more than adequate to capture the statistic
steady-state flow.

In Fig. 5(a) and (b) the streamwise mean velocity profile is normalized by
the friction velocity, uτ , and is plotted against the normalized distance to the
wall, y+ = uτy/ν. The results from “Dyn” and “f-LES” are undistinguishable
and match the DNS data from Kim et al. [14] over a wider extension of the
viscous sublayer, when compared to the Smagorinsky model. Their inertial
subrange is also bigger, as more turbulent structures are captured.

Figure 5(c) and (d) show the profiles of second order statistic of the x
and y components of velocity fluctuations, u′v′, normalized by τ . The results
from “Dyn” and “f-LES” are undistinguishable, and in an excellent agreement
with DNS data [14] in the case of regular mesh (MESH A, Fig. 5(c)). For the
irregular mesh (MESH B), however, there is a small but noticeable deviation
from the DNS data near both positive and negative peaks, but “f-LES” and
“Dyn” curves are still coincident. On the other hand, the Smagorinsky model
greatly underpredicts this cross-fluctuation near the wall (y/δ < 0.3 and y/δ >
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Fig. 5 First and second order statistics for the turbulent flow channel at Reτ = 180:
(a) and (b) Mean velocity; (c) and (d) Reynolds tensor, component τxy = (u′v′);
Left column corresponds to regular mesh in the streamwise direction, while right
column corresponds to irregular mesh in streamwise direction

1.7), in both meshes. As the Dynamic and advective models, the Smagorinsky
model also shows a further degradation in the profiles near the peaks when
going from MESH A to MESH B, although in this case it may be visually
masked by the already big discrepancies relatively to DNS.

4 Final Remarks

The performance of the new subgrid model has been evaluated for the classic
test cases involving forcing and decaying of homogeneous isotropic turbulence.
The spectrum and decaying rates for kinetic energy obtained with the advec-
tive forcing proved to be very similar to those obtained with the dynamic
model. A small advantage, however, in terms of diminished range of affected
frequencies and more consistency in the decaying rates in anisotropic meshes
can be attributed to the new method.

Turbulent channel flow simulations have also been performed in order to
compare the model proposed here with traditional Smagorinsky and Dynamic
models. For the situations tested in this work, the Dynamic and the advec-
tive subgrid model are undistinguishable. Both subgrid models are designed
to automatically adapt the dissipation levels in time, according to local re-
quirements, and that is the main reason why they can better represent critical
regions when compared to approaches that do not have this capability, like the
Smagorinsky model. The proposed model has also shown a promising consis-
tency in predictions when facing different mesh anisotropies, which suggests
it can tackle more complex problems.
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Abstract. Energy dissipation in Large-Eddy Simulations (LES) based on the ex-
plicit filtering of the flow variables is investigated. An equation for the turbulent
kinetic energy budget including the dissipation resulting from the filtering is first
derived from the filtered compressible Navier-Stokes equations. A round jet at
Reynolds number 1.1× 104 is then calculated by LES using explicit filtering. Refer-
ence solutions are obtained, and compared to experimental data. The contributions
of filtering and viscosity to energy dissipation in the jet are discussed. The filtering
activity is found to adjust to the grid and flow properties.

Keywords: Large-eddy simulation, Explicit filtering, Dissipation, Energy budget,
Turbulent jet

1 Introduction

In Large-Eddy Simulations (LES), the complexity of turbulent flows is reduced
by applying a low-pass filtering to the Navier-Stokes equations [1, 2]. The
filter width is usually taken as the mesh size so that one aims in practice at
providing solutions for the scales larger than the grid spacing, whereas the
smaller scales are removed. However, mathematical and physical modellings
are required in order to ensure that solutions to the filtered equations are
obtained, and also that they are physically correct.

The low-pass filtering of the non-linear terms of the flow equations first
leads to a closure problem by giving subgrid-scale (SGS) terms in the LES
equations. SGS models have been proposed, and specially analyzed by a priori
tests of their correlations with the SGS terms, see in references [3, 4] for
instance. One important deficiency of the SGS models is their difficulty in
accounting for the physical effects of the subgrid scales. This is in particular
the case for the SGS dissipation, which might be under or overestimated
according to the models considered [5].
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Energy dissipation in LES is a key point that needs to be carefully ad-
dressed. Noting that an artificial dissipation is required to regularize the
flow, and that eddy viscosity has the same functional form as molecular vis-
cosity, which might be unappropriate [6, 7], LES methods based on high-
order/selective filterings have been proposed, and applied successfully to con-
figurations such as isotropic turbulence, channel flows and jets [8, 9, 10, 11, 12].
The basic idea in these methods is to control energy dissipation by minimizing
the amount of dissipation on the larger scales [11]. The energy is expected to
be diffused when it is transferred to the smaller scales discretized.

One appropriate way for assessing LES quality consists in analysing the
energy budgets obtained from the numerical solutions [5, 7, 11, 13, 14]. In
the present work, in order to investigate energy dissipation in LES based on
explicit filtering, an equation for the budget of the turbulent kinetic energy
including the filtering dissipation is thus derived. The terms of the energy
budget are calculated explicitly in a self-preserving round jet at Reynolds
number 1.1× 104. The numerical solutions are compared to experiments, and
are used to quantify the contributions of filtering and viscosity to energy
dissipation in the jet. The filtering activity is finally discussed.

2 Turbulent Kinetic Energy Budget in Compressible
LES Based on Explicit Filtering

The equation for the turbulent kinetic energy budget is derived from the
filtered compressible Navier-Stokes equations, which can be written, following
Vreman et al. [5], in the following form

∂ρ

∂t
+

∂ρũj

∂xj
= 0 (1)

∂ρũi

∂t
+

∂ρũiũj

∂xj
= − ∂p

∂xi
+

∂τ̃ij

∂xj
+

∂Tij

∂xj
+Ri (2)

∂ρẽt

∂t
+

∂((ρẽt + p)ũj)
∂xj

= − ∂q̃j

∂xj
+

∂τ̃ij ũi

∂xj
+

∂Tij ũi

∂xj
+Re, (3)

where ρ represents the density, ui the velocity, p the pressure, τij the viscous
stress tensor, et the total energy density, and qj the heat flux. The overbar
denotes a filtered quantity, and the filtering is assumed to commute with
time and spatial derivatives. The tilde denotes a quantity calculated from
the filtered variables ρ, ρui and p. Thus the calculated velocity is ũi = ρui/ρ
(Favre filtering), and the calculated total energy is ρẽt = p/(γ−1)+ρũiũi/2 for
a perfect gas (γ is the specific heat ratio). The viscous stress tensor is defined
by τ̃ij = 2μ̃(s̃ij − s̃kkδij/3) where s̃ij = (∂ũi/∂xj + ∂ũj/∂xi)/2. The viscosity
μ̃ = μ(T̃ ) is provided by Sutherland’s law, and the temperature T̃ is obtained
using the state equation p = ρrT̃ . The heat flux is given by q̃j = −λ∂T̃/∂xj
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where λ = μ̃cp/σ is the thermal conductivity (σ is the Prandtl number and cp

the specific heat at constant pressure). The low-pass filtering of the Navier-
Stokes equations makes the so-called subgrid-scale (SGS) terms appear in the
right-hand side of Equations (2) and (3). The most important term is the
SGS turbulent stress tensor Tij = ρũiũj − ρuiuj , whereas the other terms are
included in Ri and Re. They are described in references [2, 15].

In the present LES approach, a high-order/selective filtering is used to take
into account the dissipative effects of the subgrid scales. This filtering is ap-
plied explicitly to the density, momentum and pressure variables, sequentially
in the xi Cartesian directions, in order to remove the wave numbers located
near the grid cutoff wave number without significantly affecting the low wave
numbers accurately resolved by the numerical methods [11]. Only the fluctuat-
ing quantities are involved in the filtering process, which implies, in particular,
that it has no effect in a steady laminar flow.

The filtering of the density variable ρ in the x1 direction yields for instance
the following filtered quantity, at grid point (x1(i1), x2(i2), x3(i3)),

ρsf
i1,i2,i3

= ρi1,i2,i3 − σd

n∑
j=−n

dj

(
ρi1+j,i2,i3 −

〈
ρi1+j,i2,i3

〉)
, (4)

where σd is the filtering strength between 0 and 1, 〈·〉 represents statistical
averaging, and dj are the coefficients of a centered (2n+1) point filter. One can
remark that the explicit filtering process (4) is equivalent to the second-order
explicit integration over the simulation time step Δt of the operator

D1 (ρ)i1,i2,i3
= − σd

Δt

n∑
j=−n

dj

(
ρi1+j,i2,i3 −

〈
ρi1+j,i2,i3

〉)
(5)

in the mass conservation equation. A similar remark can be made for the
filtering of the momentum variables.

The application of the explicit filtering to the density and the momentum
variables can therefore be integrated into the right-hand side of Equations (1)
and (2), in the following way

∂ρ

∂t
+

∂ρũj

∂xj
= D (ρ) (6)

∂ρũi

∂t
+

∂ρũiũj

∂xj
= − ∂p

∂xi
+

∂τ̃ij

∂xj
+

∂Tij

∂xj
+ D (ρui) , (7)

where the SGS term Ri is removed, and D (ρ) = D1 (ρ) + D2 (ρ) + D3 (ρ).
In what follows, the equation for the budget of the turbulent kinetic en-

ergy in compressible LES based on explicit filtering is determined from Equa-
tions (6) and (7). Statistical averaging is denoted by 〈·〉, and Favre averaging
by [·], yielding [ui] = 〈ρui〉 / 〈ρ〉. The fluctuating velocity is then defined by
u′

i = ũi − [ui], and the turbulent kinetic energy by 〈ρ〉 k =
〈
ρu′2

i /2
〉
.
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Equation 7 is first written in the non conservative form

ũi

(
∂ρ

∂t
+

∂ρũj

∂xj

)

︸ ︷︷ ︸
=D(ρ)

+ρ
∂ũi

∂t
+ ρũj

∂ũi

∂xj
= − ∂p

∂xi
+

∂τ̃ij

∂xj
+

∂Tij

∂xj
+ D (ρui) (8)

and multiplied by u′
i, leading to the equation

ρu′
i

∂ũi

∂t︸ ︷︷ ︸
A

+ ρu′
iũj

∂ũi

∂xj︸ ︷︷ ︸
B

= −u′
i

∂p

∂xi︸ ︷︷ ︸
C

+u′
i

∂τ̃ij

∂xj︸ ︷︷ ︸
D

+u′
i

∂Tij

∂xj︸ ︷︷ ︸
E

+u′
iD (ρui)− u′

iũiD (ρ)

(9)

Term A in Equation (9) is decomposed as

A = ρu′
i

∂ [ui]
∂t

+ ρu′
i

∂u′
i

∂t
= ρu′

i

∂ [ui]
∂t

+ ρ
∂

∂t

(
u′2

i

2

)
(10)

= ρu′
i

∂ [ui]
∂t

+
∂

∂t

(
1
2
ρu′2

i

)
− u′2

i

2
∂ρ

∂t
(11)

and averaged, giving

〈A〉 = −
〈
u′2

i

2
∂ρ

∂t

〉
(12)

Term B in Equation (9) becomes

B = ρu′
i [uj ]

∂ [ui]
∂xj

+ ρu′
iu

′
j

∂ [ui]
∂xj

+ ρu′
iũj

∂u′
i

∂xj
(13)

with

ρu′
iũj

∂u′
i

∂xj
= ρũj

∂

∂xj

(
u′2

i

2

)
=

∂

∂xj

(
ρũj

u′2
i

2

)
− u′2

i

2
∂ρũj

∂xj
(14)

=
∂

∂xj

(
ρ [uj ]

u′2
i

2

)
+

∂

∂xj

(
ρu′

j

u′2
i

2

)
− u′2

i

2
∂ρũj

∂xj
(15)

and one gets after statistical averaging

〈B〉 =
〈
ρu′

iu
′
j

〉 ∂ [ui]
∂xj

+
∂

∂xj

(〈
ρ
u′2

i

2

〉
[uj ]

)
+

∂

∂xj

〈
ρu′

j

u′2
i

2

〉

−
〈
u′2

i

2
∂ρũj

∂xj

〉 (16)

The sum of two expressions (12) and (16) yields

〈A〉+ 〈B〉 =
∂

∂xj

(〈
1
2
ρu′2

i

〉
[uj ]

)
+
〈
ρu′

iu
′
j

〉 ∂ [ui]
∂xj

+
1
2

∂

∂xj

〈
ρu′2

i u
′
j

〉

−
〈
u′2

i

2

(
∂ρ

∂t
+

∂ρũj

∂xj

)

︸ ︷︷ ︸
=D(ρ)

〉
(17)
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Using averaging, the term C involving pressure in Equation (9) provides

〈C〉 = −〈u′
i〉
∂ 〈p〉
∂xi

−
〈
u′

i

∂p′

∂xi

〉
= −〈u′

i〉
∂ 〈p〉
∂xi

− ∂

∂xi
〈p′u′

i〉+
〈
p′
∂u′

i

∂xi

〉
, (18)

where the fluctuating pressure is p′ = p − 〈p〉. Terms 〈D〉 and 〈E〉 are also
written as

〈D〉 =
∂

∂xj
〈u′

iτ̃ij〉 −
〈
τ̃ij

∂u′
i

∂xj

〉
(19)

〈E〉 =
∂

∂xj
〈u′

iTij〉 −
〈
Tij

∂u′
i

∂xj

〉
. (20)

The budgets for the three components of the turbulent kinetic energy are
finally obtained by averaging Equation (9)

0 = − ∂

∂xj

(
1
2
〈
ρu′2

i

〉
[uj ]

)

︸ ︷︷ ︸
mean convection

−
〈
ρu′

iu
′
j

〉 ∂ [ui]
∂xj︸ ︷︷ ︸

production

−1
2

∂

∂xj

〈
ρu′2

i u
′
j

〉
︸ ︷︷ ︸
turbulence diffusion

− ∂

∂xi
〈p′u′

i〉︸ ︷︷ ︸
pressure diffusion

+
〈
p′
∂u′

i

∂xi

〉

︸ ︷︷ ︸
pressure−dilatation

−〈u′
i〉
∂ 〈p〉
∂xi

−
〈
τ̃ij

∂u′
i

∂xj

〉

︸ ︷︷ ︸
viscous dissipation

−
〈
Tij

∂u′
i

∂xj

〉
+

∂

∂xj
〈u′

iτ̃ij〉+
∂

∂xj
〈u′

iTij〉

+ 〈u′
iD (ρui)〉︸ ︷︷ ︸

filtering dissipation

−〈u′
iũiD (ρ)〉+ 1

2
〈
u′2

i D (ρ)
〉

(21)

The main terms correspond to mean convection, production, turbulence diffu-
sion, pressure diffusion and pressure-dilatation term, and viscous dissipation.
The dissipation induced by the explicit filtering is also included in the energy
equation, and can be calculated directly.

3 Application to the Self-preserving Jet

3.1 Parameters

A round jet at Mach number M = 0.9 is computed by LES in order to calculate
the budget for the turbulent kinetic energy in the flow self-similarity region,
which is usually obtained far from the jet exit and characterized by constant



86 C. Bogey, C. Bailly

Fig. 1 Snapshot of the vorticity norm in the x − y plane at z = 0

turbulence intensities along the jet axis [16]. The Reynolds number based on
the jet diameter D and velocity uj is ReD = 1.1× 104, corresponding to that
of the jet studied experimentally by Panchapakesan & Lumley (P&L) [17].

The LES is performed using low-dissipation and low-dispersion sche-
mes [18], so that the scales discretized at least by four points are neither
significantly distorded nor dissipated. Eleven-point centered finite differences
are used for space discretization, and an eleven-point selective filtering is ap-
plied explicitly to the flow variables as described previously. The effects of
the subgrid energy-dissipating scales are then taken into account by the fil-
tering, so that no structural modelling is implemented for the SGS stress
tensor (Tij = 0 in (7) and (21)). Time integration is carried out using a low-
dissipation six-stage Runge-Kutta method.

The mesh grid is a Cartesian grid symmetrical relative to the jet axis. The x
axis is in the jet direction, and the discretizations in the y and z directions are
identical. The mesh contains 44 million nodes, and extends axially up to 150
jet radii r0, as illustrated by the vorticity field in Fig. 1. In the axial direction,
the grid spacing is uniform with Δx = r0/4. In the transverse directions, the
grid spacing is also Δy = r0/4 for 6.5r0 ≤ y ≤ 23r0, but is smaller on the
jet axis with Δy = r0/8. It is stretched for y ≥ 23r0 so that the sideline
boundaries are located at y = 33.5r0. Due to the explicit time integration,
the time step is Δt = 0.85 min(Δy)/camb, where camb is the ambient speed
of sound. For the convergence of statistics, 2× 106 time steps are performed,
leading to a physical time of Tuj/D = 9.5 × 104. The statistical averages
of the turbulent quantities are evaluated by computing time averages after
a transitory period of 105 time steps, when stationary mean flow values are
obtained. Note that 22.4 Go of memory is required for the LES, and that 8000
CPU hours have been used on SX5 and SX8 Nec computers.

3.2 Results

As a first validation, the LES results have been compared with corresponding
experimental data provided by P&L [17]. Illustrations are given below. The
profiles along the jet axis of turbulence intensities u′

rms/uc and v′rms/uc, where
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Fig. 2 Profiles of turbulence intensities: u′
rms/uc ( LES, � P&L), v′

rms/uc

( LES, � P&L), w′
rms/uc ( LES, o P&L), and <−u′v′ >1/2 /uc (

LES, � P&L); (a) along the jet centerline; (b) across the jet, averaged over
120r0 ≤ x ≤ 145r0 (uc: centerline mean axial velocity, δ0.5: jet half-width)

uc is the centerline mean axial velocity, are presented in Fig. 2(a). Their
values are nearly constant from x � 120r0, which suggests that the jet self-
similarity region is reached around this axial location. This behaviour is in
good agreement with the measurements of P&L obtained for a jet at the
same Reynolds number. In particular the transition towards the region of
self-similarity does not appear to be artificially accelerated by the application
of the explicit filtering, as it has been observed in jets at lower Reynolds
numbers [11] or when an eddy-viscosity subgrid model is used [7].

Considering the centerline profiles of turbulence intensities, the self-preser-
ving jet has been investigated by averaging the flow properties over 120r0 ≤
x ≤ 145r0. It has been done for the transverse profiles of turbulence intensities
and Reynolds stress shown in Fig. 2(b). The LES profiles compare well with
the P&L measurements. Other comparisons have been made, regarding the
mean-flow development for instance. They can be found in [19].

The budget for the turbulent kinetic energy in the jet has been determined
by calculating explicitly all the terms in Equation (21) from the LES fields.
The variations along the jet axis of the dominant terms, that correspond to
mean convection, production, dissipation, turbulence diffusion, pressure diffu-
sion, and dissipation are presented in Fig. 3(a). The dissipation here is the sum
of the viscous dissipation and of the filtering dissipation. The profiles display
short oscillations that are of low magnitude, which supports the assertion that
the convergence in time of the energy terms is satisfactory. The convergence
is however much higher for the production and dissipation terms than for the
terms associated with turbulence and pressure diffusions for instance. In ad-
dition, in the same way as the turbulence intensities in Fig. 2(a), the energy
terms appear to tend to constant values as the axial distance increases, the
self-similarity values being visibly reached around x = 120r0.
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Fig. 3 Turbulent kinetic energy budget: mean convection ( LES, o P&L),
production ( LES, � P&L), turbulence diffusion ( LES, � P&L),
pressure diffusion ( LES), dissipation ( LES, � P&L); (a) along
the jet centerline; (b) across the jet, averaged over 120r0 ≤ x ≤ 145r0 (curves are
normalized by ρcu

3
cδ0.5, ρc centerline mean density)

The budget for the turbulent kinetic energy calculated across the self-
preserving jet is presented in Fig. 3(b). The LES results are in good agree-
ment with the experimental results of P&L, for the production, mean convec-
tion, dissipation, and turbulence diffusion terms. This is remarkable, especially
since P&L neglected pressure diffusion and obtained dissipation as the bal-
ance of the other terms. The present LES thus provides reference solutions,
which complements the experimental data.

Our attention is now focused on the dissipation mechanisms involved in
the LES, namely the viscous and the filtering dissipations, given respectively
by 〈εμ〉 = −〈τ̃ij∂u

′
i/∂xj〉 and 〈εsf 〉 = 〈u′

iD (ρui)〉 in Equation (21). In earlier
works by the authors [7, 11], their contributions have been evaluated in jets,
to examine in particular the Reynolds number effects on energy dissipation.
In the present study, in order to assess the importance of the filtering, we
define, following Geurts and Fröhlich [20], the subgrid-activity parameter

s =
〈εsf 〉

〈εsf 〉+ 〈εμ〉
(22)

which represents also the filtering-activity parameter in the present work.
The profiles of the viscous and filtering dissipations along the jet axis

are presented in Fig. 4(a). The sum of the different terms in Equation (21)
is plotted as well. It is nearly zero, which suggests that the computation
of the energy budget is performed in a suitable manner, and that energy
is not significantly damped by time integration. The magnitudes of viscous
and filtering dissipations vary with the axial distance. As the jet develops in
the downstream direction, the contribution of the filtering decreases, whereas
that of viscosity increases, which leads to the lowering of the subgrid-activity
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Fig. 4 Profiles along the jet centerline. (a) Turbulent energy budget: total
dissipation, viscous dissipation, filtering dissipation, sum
of the terms in the energy equation (curves are normalized by ρcu

3
cδ0.5); (b) varia-

tions of the subgrid-activity parameter s

parameter s in Fig. 4(b). Thus about two-thirds of the energy dissipation is
provided by the filtering at x = 50r0, but only one-third at x = 150r0. This
behaviour is certainly due to the growth of the turbulent length scales along
the jet axis [16]. The mesh spacing being uniform, a more important part
of the energy-dissipating scales is then calculated, which reduced the subgrid
activity, and hence the role played by the filtering. The contribution of the
explicit filtering therefore appears to adjust itself to the flow development.

The dissipation rates obtained across the self-preserving jet for the turbu-
lent kinetic energy and for the three energy components are represented in
Fig. 5. In the four cases, as previously in Fig. 4(a), the sum of the different
energy terms is also checked to be nearly zero. The viscous dissipation appears
to be higher than the filtering dissipation in any case, whatever the radial
position may be. The ratio between the two contributions however seems
to vary with the position and with the energy component considered. The
contribution due to the filtering is for instance seen to decrease close to the
centerline. The filtering also visibly dissipates more energy compared with
viscosity in the budget for the component w′2 in Fig. 5(d) than for u′2 in
Fig. 5(b).

In order to quantify the variations of the dissipation rates across the jet,
the subgrid-activity parameter s is computed from the profiles of Fig. 5, and
presented in Fig. 6. The shapes of the curves obtained for the turbulent kinetic
energy and for the energy components are very similar, with a minimum
value close to the centerline, a slight increase before a zone displaying nearly
constant values for 0.6 ≤ y/δ0.5 ≤ 2, and a final growth for y/δ0.5 ≥ 2.
The filtering activity is therefore connected with the radial grid spacing. It
is the lower on the jet axis where the radial grid spacing is the smaller with
Δy = r0/8, does not vary significantly in the central zone where the grid
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Fig. 5 Profiles obtained across the jet from the budgets for: (a) the turbulent kinetic
energy k, and for the three energy components, (b) u′2, (c) v′2, (d) w′2, averaged
over 120r0 ≤ x ≤ 145r0; total dissipation, viscous dissipation,

filtering dissipation, sum of the terms in the energy equation (curves
are normalized by ρcu

3
cδ0.5)

spacing is uniform with Δy = r0/4, and increases in the vicinity of the sideline
boundary where the grid is stretched. The influence of the mesh grid is also
illustrated in Table 1 reporting the values of the parameter s at y = 0 and at
y/δ0.5 = 1.25. Values of 0.335 and 0.415 are for instance respectively found
from the turbulent kinetic energy.

Table 1 allows us also to compare the subgrid activity for the different
energy components. On the jet axis, where Δy = Δz, the subgrid activities
are the same for the components v′2 and w′2 due to the rotation invariance
of the flow in a cross-section. The subgrid activity for the component u′2

however displays another value because of the anisotropy of the flow and of
the mesh (Δx = 2Δy) in the x−y section. At the radial position y/δ0.5 = 1.25,
both the grid and the flow are anisotropic (Δy = Δx = Δz/2 for instance).
As a result, the filtering activity differs according to the energy components,
ranging from 0.385 for the component v′2 to 0.449 for w′2. The contribution
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Fig. 6 Profiles of the subgrid-activity parameter s across the jet, averaged over
120r0 ≤ x ≤ 145r0, calculated from: (a) the turbulent kinetic energy k, and from
the energy components, (b) u′2, (c) v′2, (d) w′2

Table 1 Subgrid-activity parameter s calculated from the turbulent energy and
from the energy components, over 120r0 ≤ x ≤ 145r0, at y = 0 and y/δ0.5 = 1.25

k u′2 v′2 w′2

s(y = 0) 0.335 0.292 0.355 0.359
s(y/δ0.5 = 1.25) 0.415 0.407 0.385 0.449

of the explicit filtering to energy dissipation is thus shown to depend both on
the grid spacing and on the flow features.

4 Concluding Remarks

An equation for the turbulent kinetic energy budget is proposed for evaluating
dissipation in LES based on the explicit filtering, and is calculated in a turbu-
lent self-preserving jet, providing reference solutions for this flow. The filtering
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activity is in particular shown to adjust to the grid and flow properties. It is
hoped that the present method could be used for other configurations. It also
appears as an appropriate tool for investigating the presence of numerical
dissipation and Reynolds number effects in LES.
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Abstract. An attempt is made to provide a criterion for optimal unstructured
meshing for LES from the knowledge of different turbulence lengthscales. In partic-
ular, the performance of a grid based on the Taylor microscales for turbulent channel
flow, is investigated, with the final view of facilitating an a priori determination of
the mesh resolution required for LES. The grid dictated by the Taylor microscales is
more cubical in the centre of the domain than the typical empirical LES grids. Fur-
thermore, it is as fine in the spanwise direction as it is in the wall normal direction.
Empirical LES grids, currently widely used, have a very fine (approximately four
times finer) wall normal resolution and a coarse (about twice as course) streamwise
resolution as compared to a grid based on the Taylor microscales. A remarkable
feature is that the mean velocity and streamwise component of fluctuating velocity
(classically over-predicted in coarse grid LES) and the wall normal fluctuating ve-
locity are well reproduced on the new grid. The attempt of building an unstructured
LES grid based on the Taylor microscale has been found very successful. However,
as the Reynolds number is increased this sort of requirement might be excessive and
eventualy a criterion such as one tenth of the integral lengthscale could be sufficient.

Keywords: Large-eddy simulation, Grid optimization, Turbulence lengthscales,
Taylor microscales

1 Introduction

In general, LES results are in better agreement with experimental evidence
compared to RANS if a sufficiently fine grid is employed. However, without
a prior knowledge of flow characteristics, it is difficult to ascertain the “suffi-
cient” resolution. As claimed by Celik [1], “a good LES is almost a DNS”, i.e.
for correct resolution of wall layers and prediction of transition, LES requires
an extremely fine grid.

Obviously, as the grid resolution tends to the smallest (i.e. Kolmogorov)
scales, LES tends to DNS [2]. The LES philosophy loses its meaning if it
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achieves grid independence and the advantage of LES being more economical
than DNS on account of resolving only the most energetic eddies, is lost [3].
Physical phenomena, including mixing and combustion, depend strongly on
the intensity of turbulent fluctuations and the convection of these fluctuations,
exhibited as turbulent dissipation. As a result, prediction of turbulent statis-
tics is as important as that of the mean flow statistics. This makes quality
assessment measures imperative for LES in engineering applications.

Most of the prior attempts at reducing computational requirements of
LES of wall bounded flows, using structured grids, involved manipulating the
grid such that all the near-wall eddies could be resolved without having a
large number of grid points in the outer layers. In wall bounded flows, the
near wall flow structures are extremely small when compared to the overall
flow dimensions. Unfortunately, these small structures play a very important
part in the turbulent boundary layer dynamics and therefore need to be well
resolved.

In typical mean flow computations, i.e. RANS models, one has to mostly
focus on resolving the large mean velocity gradients using grid stretching
in the wall-normal direction. In LES, however, a fine near-wall mesh is also
required in the direction parallel to the wall. In the previous attempts that
were made at reducing the computational requirements, this fine resolution
was normally extended into the outer layers. This was not really necessary
and consequently, these attempts at lowering computation cost by modifying
the grid employed were largely not successful.

A more promising method of reducing the number of outer layer grid points
was to use zonal embedded grids [4, 5, 6, 7]. The results thus obtained showed
good agreement with previously published numerical as well as experimental
results for same flow conditions. The calculations were claimed to require a
fraction of the CPU time needed for single zone grid calculation with same
near-wall grid density. In addition, the memory requirements were significantly
reduced.

In recent years, the grid resolution for LES computations has been made
the centre of discussion in many papers that are attempting to provide a sen-
sitive way to measure the quality of the LES predictions [3, 8, 9]. However,
apparently this has not been found a straightforward task due to the influ-
ence of the numerical dissipation that must be accounted for in the analysis.
Thus, some assumptions had to be introduced regarding the global order of
the numerical error as well as the scaling of the error like a power with grid re-
finements. Even with these approximations, the method suggested by Klein [8]
for example, request a strict minimum of three LES runs for the same case to
be able to obtain any meaningful LES results.

The present work expands toward an alternative method which can be used
with any commercial or research CFD code to provide guidance for building
a proper grid for LES computations, eventually using a precursor RANS sim-
ulation. The next section explains the necessary conditions that one has to
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bear in mind for this goal to be fulfilled. This is followed by results of LES
computations based on this analysis and some concluding remarks.

2 Turbulence Lengthscales

The first step towards addressing different questions concerning turbulence
and turbulent flows is to distinguish between small-scale turbulence and the
large scale motions in turbulent flows.

At high Reynolds numbers, the dynamics of the flow is characterized by
the existence of a number of different lengthscales. Some of these assume
very specific roles in the description and analysis of the flow. A wide range
of lengthscales exists, limited at one end by the diffusive action of molecular
viscosity (the Kolmogorov scales) and at the other by the dimensions of the
flow field.

It is well-known that in SGS models based on the Boussinesq theory by
introducing an algebraic eddy-viscosity model, the implicit cut-off filter width,
κc, has to be positioned in the inertial region of the energy spectrum.

This is easy for HIT decay (homogeneous isotropic turbulence), because
the spectrum of the initial field is given or chosen, so one simply ensures that
the mesh step h is such that κc = 2π/2h is in the inertial region. Note in
passing that the filter width is then δ = 2h and not δ = h, as (unfortunately)
frequently encountered in recent publications. In application other than HIT,
three different mesh steps need to be defined for the three directions and these
are moreover variable in space, yet there are no guidelines as to how to choose
these scales, so generally authors refer to previous successful LES, which only
works when the objective is a “post-diction” rather than “pre-diction”.

In a non-isotropic context, the following definitions of lengthscales are
used.

The integral lengthscale is theoretically defined as the integral of the two
point correlation, i.e.

Liik
(y) =

1
Rii(0, y)

∫ ∞

0

Rii k(rk, y) drk (1)

without summation on repeated indices. In general “ii” will be used for the
corresponding velocity component and “k” for the co-ordinate direction.

Another large scale is the “energy carrying eddies” scale or “energy length-
scale” obtained by dimensional analysis, and based on RANS model results:

LRM i = A
< uiui >

3 /2
ε

(2)

For HIT, with the constant A taken close to unity [10], LRANS i gives
some indication of the true integral scale.

These scales are easily computed in the HIT test case. The Taylor mi-
croscale is defined as;
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λii k =

√
2 < uiui >

< ∂ui

∂xk

∂ui

∂xk
>

(3)

And might be approximated by the HIT derived formula:

λRM i =
√

15
< uiui > ν

ε
(4)

Extending this outside HIT assumes a relation between componentality
and dimensionality (respective velocity components and lengthscale direc-
tions), that is not obvious in general but will be seen to be reasonable for
near wall flows. The “RM” subscript indicates that estimates of these scales
could be provided by a RANS Model; more precisely a low Reynolds Stress
transport model if an accurate representation of anisotropy is expected.

Finally, and again for near wall effects, the definition of the Kolmorov scale
is extended to include some anisotropy:

η = (
ν3

ε
)1/4 (5)

ηi = (
ν3

εii
)1/4 (6)

In HIT the longitudinal and the transverse scales are related by

λ11 1/
√

2 = λ22 1 = λ33 1 (7)

and
L11 1/2 = L11 2 = L22 1 (8)

Figure 1 displays the longitudinal one-dimensional energy spectra obtained
from the experiment of Kang et al. [10] at Reynolds number Reλ = 720.
Added on the figure are the RANS model bases integral scale and the Taylor
microscale computed from the Equations (1) and (4) respectively which are
valid in HIT so agreement comes as no surprise. Quite obviously also, the
integral scales are positioned at the top limit of the inertial range (notice
the −5/3 slope), the Taylor scales are located more than a decade lower.
In fact the Taylor microscale is a combination of the energy scale and the
Kolmogorov scale as λ ∼ L

1/3
RMη2/3 so λ/LRM ∼ (η/LRM )2/3 and an LES

based on the Taylor microscale would become over-resolved at higher Reynolds
numbers; a bound on the filter scale such as Δ = max(λ,LRM/10) could be
recommended.

3 Analysis of Turbulent Channel Flow

We now consider channel flow, with internal flow notations: 1 ∼ x for stream-
wise; 2 ∼ y for wall normal and 3 ∼ z for spanwise directions.
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Fig. 1 Comparison between Taylor microscales and the Integral scales in HIT at
the two stations 20 and 48 [10]

Results for turbulent channel flow available from direct numerical simula-
tions performed at Reynolds numbers ranging from Reτ = 150 to 720 [11, 12]
were employed to extract velocity and energy spectra, two point correlations
and consequently the different turbulent lengthscales.

In Figs. 2 and 3, the Taylor microscales are displayed along with the one-
dimensional spectra at two dimensionless distances from the wall. It is no
longer possible to identify an inertial range like in the HIT test case. It may
be observed from the figures however, that near the wall region is dominated
by anisotropic structures up to the Kolmogorov scales, while in the log-layer
the flow becomes more isotropic. The Taylor microscales exhibit the same
behaviour. It can therefore be reasonably stated that away from the wall,
the Taylor microscales should be able to dictate an isotropic grid that is well
suited for LES, while near the wall the computation switch to a DNS in which
the anisotropy of the structures has to be correctly captured.

Longitudinal lengthscales are divided by 2 or
√

2 for integral and Taylor
scales in subsequent graphs.

Figure 4 shows the integral lengthscales as defined from integral of the two
point correlation (1), and extracted from the THTLab database [11]. Effec-
tively, the integrations have been stopped when the correlation is lower than
10% to avoid spurious effects of periodicity conditions in the simulations. As
could be expected, the streamwise correlations (k = 1) show the overwhelm-
ing influence of streaks up to y+ = 100. For this Re, note that the scales at
the wall (y+=0) are roughly the same as those in the core of the flow (80
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Fig. 2 Streamwise energy spectra from
DNS computations at Reτ = 640

Fig. 3 Spanwise energy spectra from
DNS computations at Reτ = 640

wall units). The spanwise correlations (k = 2) on the other hand, show an
initially linear growth (roughly scaling with the Von Karman constant 0.41),
starting from a wall value of about 20 viscous units. Hence for a well resolved
near wall layer one must have Dx+� 80 and Dz+� 20, which is empirical
practice. At the centre, the scatter between components is larger compared to
our expectation of isotropic turbulence, but this may be attributed to the fact
that large scales require larger statistical samples. However, the streamwise
and spanwise scales are coming together. Figure 5 now shows the turbulent
energy scales as could be obtained from a RANS model (a perfect model, as
DNS data is used as input to the formula). Scaling the mesh steps with these
scales is not appropriate as they obviously start from zero, but also decrease at
the centre, except the wall normal component which has a monotonic growth
and better differentiates between the Log layer and core of the channel (this
is in fact one of the assets of Durbin’s V2F model).

The scales for the high Reynolds number (Reτ = 720) are plotted in
Fig. 6 as a function of the normalized wall distance. Although omitted here
for clarity, similar behaviour was observed for the scales of the other two cases,
at lower Reτ , with their magnitude increasing with decreasing Reτ .
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Fig. 4 Integral lengthscales for Reτ = 395 from DNS [11]. (Correlations integrated
only upto 0.1)

Fig. 5 Energy lengthscales for Reτ = 395 from DNS [11]. (Correlations integrated
only upto 0.1)

The streamwise Taylor microscales (k = 1), when divided by
√

2, seem
to indicate that a streamwise filter of Δ+

1 = 35 to 55 viscous units should
be sufficient to capture the wall normal velocity fluctuations (i = 2) which
demand the finest resolution.

It is interesting to notice that the transverse Taylor microscales (k = 3)
vary similarly to ten times the Kolmogorov scales even upto the centre (for
this Re). Both scales show a large variation and anisotropy near to the wall (up
to y+ = 30), then almost a linear variation, making it difficult to distinguish
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Fig. 6 Comparison between different lengthscales for the channel flow test case at
Reτ = 720

the log-layer region from the core region of the channel. The one-tenth of
estimated integral lengthscale as estimated from LRM i(Equation (2)) was
expected to dominate in the central region, but Reτ = 720 is still too low
for this to happen. Near the wall LRM i/10 decreases very rapidly compared
to the Kolmogorov or transverse Taylor scales. The latter suggest Δ+

3 = 15
at the wall to 45 at the centre which is in line with empirical knowledge.
The estimated Taylor scale λRM i is quite close to the actual one for i =
1 and 3, but shows an overestimation for the wall normal velocity. It also
has the disadvantage of going to zero at the wall. Finally the “anisotropic”
Kolmogorov scale suggested by Equation (6) is of course isotropic for y+ > 50,
and is singular at the wall for i = 2, and is thus not worth perusing.

From literature it is possible to find that the maximum grid size that
is used for DNS is about 5 times the Kolmogorov scales everywhere. Thus,
it can be argued that computations using grids based on these scales are
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still within the limits of the LES approach. To conclude one may recom-
mend an unstructured mesh such that Δ1 = max(min(λii 1, LRM/10)) and
Δ3 = max(min(λii 3, LRM/10)), but with λii k = max(λRM k, η/5) when the
Taylor microscale needs to be guessed from a RANS model. No two point
correlation data is available for the wall normal lengthscales, so an estimate
Δ2 = max(min(λ22 k), LRM/10) is used.

4 Application to Turbulent Channel Flow

Based on the above analysis, a grid has been generated for a plane channel
at Reτ = 395 using the transverse Taylor microscales. The grid density is
summarized in Table 1 in comparison of a DNS grid used by Moser et al. [13]
and Fig. 7 illustrates the anisotropic cell distribution in the three directions
of the domain with a total of 443,272 cells. The commercial code Star-CD has
been used for the present simulations. The computations have been carried
out using the classical Smagorinsky model with Van Driest damping function.

Table 1 Number of cells in the three directions of the domain

Nx Ny Nz

LES 68 to 200 46 42 to 100
DNS 256 193 192

Fig. 7 Grid built for channel flow using Taylor microscales
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Fig. 8 LES results obtained with the grid generated using Taylor scales (LES Taylor)
in comparison with an LES using structured grid (LES STRUC)

Figure 8 illustrates the obtained results in comparison with results from
DNS and LES employing structured grids. A remarkable feature is that
over-prediction of the mean velocity and streamwise component of fluctu-
ating velocity, usually encountered in LES, are not very pronounced in this
simulation. However, some under-prediction of the wall normal and fluctuat-
ing velocities occurs, chiefly in the centre of the channel. The velocity profile
results very closely follow DNS results and therefore, the attempt of building
an LES grid based on the Taylor microscale has been very successful.

5 Conclusions

A grid following the spanwise Taylor microscales in the streamwise, wall nor-
mal and spanwise directions gives good agreement of the LES results with
those obtained from DNS.

The most important features of this grid, differentiating it from all earlier
empirical meshes, are the almost cubical geometry of the cells and the fineness
in the spanwise direction. Empirical LES grids, currently very widely used,
have a very fine (approximately four times finer) wall normal resolution and
a coarse (about twice as coarse) streamwise resolution as compared to a grid
based on the Taylor microscales.

The cubical nature of the grid enables the flow vorticity to be effectively
captured. Consequently, the turbulent mixing is well taken into account and
near wall fluid acceleration is restricted. The results seem to indicate that the
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spanwise mesh resolution is very consequential in correctly resolving turbu-
lence in channel flows.

As the present investigation was in progress, a paper by Meyers and Sagaut
[14] showed that a very coarse DNS can predict mean profiles surprisingly well,
for very specific cell size distributions, but depends strongly on the wall normal
resolution and Reynolds number. Nevertheless the present unstructured grid
has been build on physically meaningful lengthscales rather than trial and
error. The prescribed criteria now need to be tested in different configurations
such as jets and separating flows.
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Abstract. After an introduction to the underlying problem, the governing equa-
tions and discretisation schemes, we present in the first part of this contribution the
calculation of the model and discretisation error in a turbulent natural convection
flow in a tall cavity. It is based on uniform grid refinement and explicit values are
given for the error components. In the second part we apply for the same problem
local grid adaptation using four different a posteriori error indicators. The com-
putational results are compared with experiments and it is shown, that adaptively
refined grids with considerably less elements deliver comparable results gained on
finer uniformly refined grids.

Keywords: Model and discretisation error on uniform grids, Local adaptive a pos-
teriori error indicator, Natural convection

1 Introduction

The numerical simulation of turbulent flow is still a challenging task. Turbu-
lence models are applied, because the small turbulent scales in most technolog-
ically relevant applications cannot be resolved by today’s computer resources.
Although Large Eddy Simulation (LES) models the majority of the frequen-
cies in the turbulent spectra, LES still requires rather fine meshes.

An inherent question in LES is the influence of the subgrid-scale model
and the computational grid on the overall result, especially when both errors,
the model error and discretisation error, are of the same order. This issue will
be addressed first in this contribution. In particular, for a natural convection
problem both error contributions will be indicated by means of uniform re-
finement of the grid size on the one hand and varying filter size on the other
hand.

As in many flow problems, turbulence is not isotropic throughout the whole
computational domain, adaptive methods are predestinated to generate an op-
timal mesh. This represents the second part of this contribution. Specifically,
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the numerical and modeling error is minimised with respect to a given num-
ber of elements. Whereas typically only the approximation error is considered,
our approach comprises both error components. Four types of error indicators
are applied to the natural convection problem: a classical residual based, a
hierarchical, a maximum and a gradient indicator for the a posteriori error.
Finally, they are compared with numerical results on uniformly refined grids
and experimental results.

2 Natural Convection in a Tall Cavity

The numerical investigations are carried out by means of the natural convec-
tion problem presented by Betts et al. [1]. A natural convection flow of the
fluid air is established by heating one of the vertical walls in a tall cavity as
shown in Fig. 1. In such flow problems, the flow characteristic is described by
the Rayleigh-number

Ra =
gγΔTL3

0

νκ
,

where g stands for gravity, γ for volume expansion, ΔT for characteristic
temperature difference, L0 for characteristic length, ν for kinematic viscosity
and κ for thermal diffusivity. Betts and Bokhari showed in this benchmark
fully developed turbulence with a Rayleigh number of Ra = 0.86E+6. Because

Fig. 1 Natural convection problem in a tall cavity
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Table 1 Grid hierarchy of the tall cavity problem

Level i hi #hexa #nodes #unknowns

3 0.00950 8192 9945 49725
4 0.00475 65536 72369 361845
5 0.00238 524288 551265 2.75632E+06

of the large length L and the rather small temperature difference of ΔT =
17.6K, turbulent flow can be assumed for constant material properties of air
at ambient temperature.

The computational domain is discretised with hexaedra and a uniform grid
hierarchy is created by uniform refinement starting from the coarse grid. The
grid hierarchy with its mesh sizes, number of elements, nodes and unknowns
is shown in Table 1.

3 Mathematical Model and Discretisation

Starting point are the filtered Navier–Stokes equations modeling turbulent
fluid flow. Special attention is drawn to the construction of variable filter sizes,
which is a prerequisite here for evaluating model and discretisation error.

3.1 Mathematical Model

In order to employ a LES model, the incompressible Navier–Stokes equations
are formally filtered and read as follows:

∂ūj

∂xj
= 0

∂ūi

∂t
+

∂(ūj ūi)
∂xj

+
∂p̄

∂xi
− ν

∂2ūi

∂xj∂xj
+

∂τij

∂xj
+ γδi3gi(T̄ − T0) = 0 (1)

∂T̄

∂t
+

∂(ūj T̄ )
∂xj

− ∂

∂xj

(
κ
∂T̄

∂xi

)
+

∂qj

∂xj
= 0,

where ūi, p̄, T̄ represent the filtered velocities, pressure and temperature. The
subgrid scale (sgs) tensor τij and sgs heat flux qi close the system. Applying
the Smagorinsky model, the sgs terms are defined as follows:

τij = uiuj − ūiūj = 2νt|S̄|S̄ij = 2CsΔ
2|S̄|S̄ij

qj = uiT − ūiT̄ = κt
∂T̄

∂xi
,

with the sgs strain tensor S̄ij := (∂ūi/∂xj + ∂ūj/∂xi)/2, its absolute value
|S̄| = (2S̄ijS̄ij)1/2, the filter size Δ, the Smagorinsky constant with chosen
value Cs := 0.1, the eddy viscosity νt and eddy thermal diffusivity κt. The
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eddy thermal diffusivity is determined in a very similar manner than the eddy
viscosity:

κt =
νt

Prt
.

The turbulent Prandtl number Prt can be set to one, which is justified in [2].

3.2 Discretisation

The system of partial differential equations is eventually discretised. The spa-
tial discretisation is carried out by a vertex-centered finite volume scheme with
colocated variables using continuous, piecewise trilinear ansatz functions. The
LBB-stabilisation criterion is met due to a special pressure interpolation, lead-
ing to stabilising terms in the continuity equation. The basic idea stems from
[3] and the improved scheme was implemented in UG [4] by Rentz-Reichert
and Nägele [5, 6]. The discretisation is locally flux-conserving and second-
order consistent for the second order terms.

In order to avoid time step restrictions induced by the Courant-Friedrichs-
Lewy condition, a fully implicit time integration method is used. We apply
the A-stable Fractional-Step-Θ-scheme [7], which is second order consistent
in time requiring the solution of two fractional steps.

3.3 Solving Strategy

Each time step, the system of nonlinear equations has to be solved. The non-
linear solution is found using Newton’s method. The nonlinear iteration to
solve (1) is considered to have converged, if

||dj
Θ(x̃||2 ≤ 10−5||dΘ(x̃)||2,

where the nonlinear defect of the iterate x̃ is defined by

dj
Θ(x̃i) := F j,j−1

Θ (x̃j−1, x̃j−Θ, x̃j).

Each nonlinear iteration requires the solution of the linear equation derived by
linearising 1. The linear system is obtained using a Quasi-Newton linearisation

un
j

∂un
i

∂xj
≈ un−1

j

∂un
i

∂xj
, un

j

∂Tn

∂xj
≈ un−1

j

∂Tn

∂xj

obtaining linear convergence [8]. On average, about 4 Newton iterations are
required to solve each nonlinear problem. The linear system is solved using
the geometric multigrid method with a V(2,2)-cycle applying ILU as a robust
smoother. It is accelerated using a Bi-CGStab Krylov-space-method.
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Fig. 2 Different filter sizes for node xj on an unstructured grid

3.4 Construction of Variable Filtersizes

In order to evaluate the error components in a LES, the filter widths are of
variable size and, hence, are not fixed to the grid size, as it is usually practised.
We define an environment U(Δl−d

l (xj)) for the filter size Δ on grid level l, the
filter depth l − d at each node xj in the computational grid and the relevant
elements K from the triangulation τl:

U(Δl−d
l (xj)) :=

⎧⎪⎪⎨
⎪⎪⎩

Bj for d = 0⋃
{K ′ ∈ τl : K ′ ∩K ′′ �= ∅,K ′′ ∈ τl−d : K ′′ ∩ xj �= ∅}K ′,

for d > 0.

The smallest filter size is defined by d = 0 resembling the control volume Bj

on level l. The next larger filter size is composed by summing up the elements
sharing node xj . A recursive algorithm adds successively neighbour elements
for d > 1. Three different filter sizes are exemplified in Fig. 2.

3.5 Numerical Experiments

The resolved kinetic energy, which is defined as

Eres :=
1
|Ω|

∫
Ω

d∑
i

ū′
iū

′
i dV,

is computed on the grid levels l3, l4, l5 with the three different filter sizes
d = 0, d = 1, d = 2 respectively. As can be seen from Fig. 3, the kinetic energy
decreases with increasing filter size. On the other hand, grid convergence for
the filter size d = 0 cannot be stated clearly. But, referring to filter sizes d = 1
and d = 2 the solutions converge to the solution on the finest grid level. These
data can now be used for evaluating the model and discretisation error.
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Fig. 3 Eres on grid level l3, l4, l5 with three filter sizes d = 0, d = 1, d = 2

4 Model and Discretisation Error

The approach for separating both types of errors is described in the follow-
ing and both errors are given for the computations carried out. Unlike Direct
Numerical Simulation, where no turbulence model is used at all, LES incorpo-
rates a model error in addition to the discretisation error. The interaction of
the two error components especially for second order consistent discretisation
schemes, the consistency error of which corresponds to the eddy viscosity, is
a priori not clear. Geurts presented in [9] an approach to analyse the influ-
ence of the different errors. It should be noted that not the actual error in a
mathematical rigorous sense is determined, but rather the tendencies of the
two error components. We follow Geurts’ ansatz and define the discretisation
error ed and model error em as follows:

edp
li,lj

:= xLES(Δp
li
)− xLES(Δp

lj
), lj > li, li, lj , p ∈ N0 (2)

emp
li,lj

:= xLES(Δlj )− xDNS,lj ◦G(Δp) (3)

The filter size Δp
li

corresponds to the control volume on the coarser grid li.
This filter size is the same on the finer grid but is resolved by more elements.
In (2) the so-called production LES xLES(Δp

li
), which assumes an appropriate

grid and the control volume as the filter size, is subtracted from a fine LES
xLES(Δp

lj
), in which the grid size is comparatively small. In this way one may

extract the discretisation error. On the other hand subtracting an explicitly
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Table 2 Model and discretisation errors

xLES(Δ3
l3,l5) xLES(Δ3

l3,l4) xLES(Δ4
l4,l5)

ed3
3,5 = 0.1281 ed3

3,4 = 0.1111 ed4
4,5 = 0.0283

em3
3,5 = 0.0110 em3

3,4 = 0.0068 em4
4,5 = 0.0044

ed/em = 11.6 ed/em = 16.3 ed/em = 6.4

filtered DNS in (3) with the filter operator G(Δp) from the fine LES, the
discretisation error is small and only the model error remains. With (2) and
(3) and with x := Eres the error components in the kinetic energy for the
computations mentioned above can be estimated. The values are shown in
Table 2 and refer to the Rayleygh number given above. From that table it can
be stated that the discretisation error is one order of magnitude larger than
the model error. In addition, the discretisation error converges faster than the
model error.

5 Adaptive LES

In many situations of practical interest, turbulence is not isotropic in the whole
domain. Areas, in which high turbulent intensity can be observed, change to
low turbulent intensity or even to laminar flow in other regions. With fixed
mesh sizes the requirements on the model to deliver accurate results are high.
We follow a grid adaptation approach, in which the mesh is adapted locally
according to the current solution using the simple Smagorinsky model. Differ-
ent approaches for adaptive LES exist, like the Stochastic Coherent Adaptive
LES [10], where an adaptive wavelet model is used, or the dual weighted resid-
ual based a posteriori indicator [11]. Our approach differs from other methods
since the mesh is adapted dynamically many times in one computation using
classical residual based error indicator as well as indicators suited for LES,
like the tracking of the eddy viscosity.

In this section, first the different a posteriori error indicators are described,
followed by the quantities on which the indicators are based. The velocity in
a seminorm is finally compared with results on uniformly refined grids and
experimental results.

5.1 Grid Adaptation Strategy

In order to adapt the grid with respect to a certain criterion, an indicator
ηk is evaluated on each element and it is then checked, whether ηK < εη,
with the error tolerance threshold εη. If ηK > Cref εη, then this element is
marked for refinement, in which Cref represents a parameter for refinement.
On the other hand, if ηK < Ccoaεη, then this element is marked for coarsen-
ing, with the coarsening parameter Ccoa. In order to keep the mesh within
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Fig. 4 Points of refinement and kinetic energy over time interval

certain bounds, maximum and minimum grid levels are defined. Hence, the
maximum number of elements is determined by the number of elements on
the finest grid (maximal grid level), whereas the minimum number of elements
is determined by the number of elements on the coarsest grid (minimal grid
level). We apply four different a posteriori error indicators: residual based,
hierarchical, maximum and gradient error indicator. In the following adaptive
computations the minimum grid level is l3 and the maximum grid level is l5.
This algorithm is performed after each 10th timestep. The points of refinement
over a time sequence are shown in Fig. 4. As turbulent flow differs completely
from elliptic problems, to which error indicators are applied successfully and
with which the error thresholds can be applied as mentioned above, refining
grids in turbulent flow problems mean under normal conditions solving a dif-
ferent problem. Against this background the thresholds Cref and Ccoa must
be adapted during the computation. It turned out that this rather technical
point of view requires a lot of sensitivity analysis.

5.2 A Posteriori Error Indicators

Four different a posteriori error indicators are applied:

1. residual based
2. hierarchical
3. gradient jump
4. maximum

The residual based error indicator [12] is constructed to detect the discretisa-
tion error and is defined as follows:

ηres,K : ωr|ηr|+ ωju|ηju|+ ωd|ηd|, (4)
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with the weighting parameters ω for the residual ηr, the gradient jump over
the element sides/edges ηju and the divergence ηd.

The hierarchical indicator [13] compares a quantity in two different func-
tion spaces:

ηhi,K := ||φ1 − φ2||,
where φ1 ∈ V1 and φ2 ∈ V2 represent a quantity in functional spaces V1 and
V2 respectively with V1 ⊂ V2. Since the geometric multigrid is applied and
several grids are available, it is natural to base the function spaces on the grid
hierarchy.

The gradient jump indicator [12] computes the gradient jump of a quantity
over element sides/edges bf(K). Although strictly speaking, this indicator is
a subset of the residual based indicator, it is used as a stand-alone indicator
and is defined as follows:

ηju,K :=
∣∣∣∣
∣∣∣∣nj

∂uh,i

∂xj

∣∣∣∣
∣∣∣∣
bf(K)

(5)

Eventually, the maximum indicator simply takes the absolute value of
quantity φ:

ηmax := |φK |
The quantities mentioned above can be principally arbitrary. Here, the

quantities velocity and eddy viscosity are chosen. An example of an adaptively
refined grid is shown in Fig. 5.

The number of elements is kept roughly at 30000(+/−5000) elements over
the whole time sequence.

5.3 Comparison with Solutions on Uniform Grids and Experiments

In the first instance the adaptive solutions are compared with solutions on
uniform grids with respect to kinetic energy. Figure 6 shows this quantity of
the four indicators and uniform solutions respectively. It can be noticed that
only the residual indicator ηr and maximum indicator ηmax(νt) are capable to
approach the characteristics of the uniform solutions Δ4

4 and Δ5
5. The other

two indicators converge towards the coarse uniform solution Δ3
3.

Eventually, the different computations are compared with experimental
results reported in [1]. More precisely, the vertical velocities along a horizon-
tal line over the short axis at 0.7H and 0.5D are compared. Figure 7 shows
the averaged velocities of the adaptive and uniform computations and the
experimental results. Even the uniform computations on the fine grid differ
in some intervals of ξ considerably from experimental results. These devia-
tions can be explained in two ways. First, the number of time steps, between
2000 and 5000, is possibly too low for statistical reliable mean values. Sec-
ondly, it is observed in the computations that large coherent structures move
comparably slow across the domain. The residence time of these structures is
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Fig. 5 Adaptively refined grid

comparable to the overall time sequence and, thus, influences the mean values
dramatically.

Nevertheless, referring to the computations, it can be seen, that the hier-
archical indicator ηhi(νt) fits least. The maximum indicator ηmax(νt) delivers
the best results, whereas the other two indicators ηju(νt) and ηr lie somewhere
in between.

6 Conclusion

The essence of this contribution is twofold. First, an evaluation of the model
and discretisation error within LES of a turbulent natural flow problem is
given. It shows that the discretisation error converges faster with decreasing
grid size than the model error with decreasing filter size. Secondly, local grid
adaptation using four different a posteriori error indicators have been suc-
cessfully applied to this flow problem. It showed that as well as in the kinetic
energy and in the seminorm (vertical velocity along a horizontal line) the
maximum error indicator ηmax(νt) seems to be a good choice. A comparable
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Fig. 6 Adaptive versus uniform solutions

Fig. 7 Vertical velocities along a horizontal line: Comparison between adaptive and
uniform computations and experimental results
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solution can be obtained by using 50% (grid level 4) or even less than 10%
(grid level 5) of the elements on uniform grids.
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Abstract. Subject of this work is the influence of numerical parameters on quality
and efficiency of Large Eddy Simulations. Variations of the time step size and the
convergence criterion are considered. The influence of these parameters on mean
values and computational time are presented and discussed. The computations were
carried out for the well known test case “Periodic flow over a 2D hill”.

Keywords: Large eddy simulation, Time step size, Convergence criterion, Effi-
ciency, 2D hill

1 Introduction

Large Eddy Simulation (LES) is a promising way for the simulation of turbu-
lent flow fields of practical relevance. Nevertheless it is still restricted by the
capability of today’s computers.
To be able to make reliable predictions at a minimum of computational costs,
it is necessary to understand the influence of boundary conditions, discretiza-
tion methods etc. as well as the influence of numerical parameters. This contri-
bution focus on the numerical parameters time step size and the convergence
criterion.
The use of implicit time discretization schemes allows time step sizes with cor-
responding CFL (Courant-Friedrichs-Lewy) numbers greater than one. Using
a time step size with a maximum CFL number of approximately one, local
CFL numbers are smaller than 0.3 for the considered test case (see section
3.1) for the most part of the computational domain (compare Fig. 1). Espe-
cially when structured grids are used for the simulation of wall bounded flows,
the resolved wall in combination with the maximum acceptable aspect ratio
can lead to unnecessarily fine grids in the center of the computational do-
main where the highest flow velocities occur and, therefore, the highest CFL
numbers.

J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, 119
c© Springer Science+Business Media B.V. 2008
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Fig. 1 Spatial distribution of the CFL number for CFLmax ≈ 1. CFL > 0.3
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Fig. 2 Convergence behavior for a LES at a fully turbulent state

For statistical analysis it is necessary to calculate relatively big time in-
tervals. The use of larger time steps allows the computation of the required
interval with a fewer number of time steps.

Another important numerical parameter is the convergence criterion. It
is the basic prerequisite for reliable results. Figure 2 shows a typical conver-
gence behavior of a LES after a fully developed turbulent state is reached.
Each “spike” marks one time step. It is obvious that the choice of a stricter
convergence criterion leads to longer computational times. Therefore, for effi-
ciency reasons the convergence criterion should not be chosen more restrictive
as necessary to get accurate results.

2 Numerical Method and Code Description

To perform the LES the incompressible finite volume solver FASTEST [2] is
used. It solves the filtered Navier-Stokes equations on boundary fitted, block
structured grids. The convective and diffusive fluxes are approximated with a
second-order central difference scheme. Subgrid stresses are computed using
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the Smagorinsky model with the dynamic approach of Germano [3]. The im-
plicit Crank-Nicolson scheme is applied for time discretization. The pressure
velocity coupling is realized with the SIMPLE algorithm which is embedded
in a geometric multi-grid scheme with standard restriction and prolongation
[1]. For smoothing the SIP solver is applied.
In each time step it is assumed to have a converged solution if the sum of the
residuals rΦ over all control volumes for each flow quantity Φ is smaller than
the convergence criterion rc

rΦ =
NCV∑
j=1

|rj | < rc, (1)

where NCV is the number of control volumes.

3 Simulations

3.1 The Test Case

The considered test case is the well known “Periodic flow over a 2D hill” (ER-
COFTAC test case 9.2) which is a periodic segment of a channel constricted
by “2D hills” at the lower wall. The Reynolds number Rh based on the hill
height h is approximately 11600. The computational domain is periodic in
streamwise as well as in spanwise directions in order to avoid uncertainties
due to unknown boundary conditions. Although the simple geometry, the flow
shows different features like separation, strong recirculation and reattachment.
The geometry of the test case is shown in Fig. 3. The computational domain
is of the size 9h× 3.03h× 4.5h.
Since the flow field is statistically 2D, additional averaging in spanwise direc-
tion is possible. This reduces the required number of time steps for turbulence
statistics significantly.

Fig. 3 Geometry of the test case with mean streamlines and locations for the analysis
of the mean values as well as monitoring points
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3.2 Validation of the Simulation Setup

Influence of the Spatial Resolution

In order to get information about the quality of the perfomed simulations the
results of an LES on a 1.47×106 control volume (CV) grid – which is used for
the parameter studies described in Section 3.3 – are compared with reference
data of an LES on a five million CV grid taken from Jang et al. [4] as well as
with own reference data of an LES on a 11.8×106 CV grid. Figure 4 shows the
mean streamwise velocity component <u>, normalized with the bulk velocity
ub, for the above mentioned simulations at different locations.

The mean velocities (Fig. 4) obtained with FASTEST on both grids are in
very good agreement with the reference data of Jang et al. [4] at all considered
locations except at the streamwise position x/h = 6. At this position the mean
velocity near the lower wall is bigger. The mean streamwise velocities obtained
with FASTEST show almost no difference for both grid resolutions. Also the
mean fluctuations (Fig. 5) are very similar the data of Jang et al. In the
center of the computational domain the fluctuations obtained with FASTEST
are smaller than those of data of Jang et al. for the locations x/h = 0.05 and
x/h = 8. At the other considered positions the results are relatively close to
the data of Jang et al. but differ from each other for the two grid resolutions.
This differences are most likely caused by the relatively short time interval on
which averaging was performed and should reduce when averaging is carried
on. The error due to the averaging time will be adressed later.
For the following parameter studies the data of the 11.8 × 106 CV LES will
be used as reference solution.

Influence of the Averaging Interval

To obtain a statistically converged solution it is necessary to perform time av-
eraging over a sufficiently long time interval. Since many parameter variations

Fig. 4 Validation of the computational setup. Profiles of the normalized mean ve-
locity component < u >/ub at different locations
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Fig. 5 Validation of the computational setup. Profiles of the normalized mean fluc-
tuations < u′u′ >/u2

b at different locations

Fig. 6 Validation of the computational setup. Profiles of the normalized mean ve-
locity component < u >/ub at different locations for different averaging intervals

are considered in this study (see Section 3.3), it is important to find a good
compromise between a statistically full converged solution and a relatively
short averaging interval in order to keep the simulation time in an acceptable
range. To get information about how the chosen averaging interval influences
the computational results, different averaging times are considered for one of
the most efficient simulations from Section 4.2 with a convergence criterion of
rc = 10−4.
The mean streamwise velocity component (Fig. 6) show almost no difference
for the considered averaging intervals of 40 and 100 flow through times (FTT).
Therefore it can be considered as statistically converged after 40 FTT.

Also the mean streamwise fluctuations (Fig. 7) show a very good agreement
for both time intervals at the positions x/h = 0.05 and x/h = 8. At the
other two positions which are strongly influenced by the recirculation zone
the differences are bigger. Nevertheless it seems to be a good compromise to
use an averaging interval of 40 FTT for the following parameter studies.
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Fig. 7 Validation of the computational setup. Profiles of the normalized mean fluc-
tuations < u′u′ >/u2

b at different locations for different averaging intervals

3.3 Performed Simulations

To gain information how larger time step sizes affect the results of the simula-
tion, computations with different time step sizes and corresponding maximum
CFL numbers of approximately 1, 2, and 5 were carried out. Averaging was
performed for 40 flow-through times. Additionally a computation with a weak
convergence criterion of rc = 10−1 and the biggest considered time step size
with CFL ≈ 5 was carried out.
As mentioned before the convergence criterion rc is another important nu-
merical parameter which influences the quality of the results as well as the
computational time and therefore the efficiency of the calculation. To get in-
formation about its effect on results and efficiency, simulations with different
convergence criteria (rc = 10−4, 10−3, 10−2, 10−1) were carried out. Another
simulation with only one SIMPLE-Iteration per time step without any con-
vergence check was performed as well.
Table 1 gives an overview of the performed simulations. In Section 4 the pro-
files of the normalized mean streamwise velocity component <u>/ub as well
as the profiles of the normalized mean streamwise fluctuations <u′u′>/u2

b are
compared to each other. Further the convergence behavior and the computa-
tional times are evaluated.

Table 1 Overview of performed simulations

Δt (CFL) 5 × 10−5s (≈ 1) 10−4s (≈ 2) 2.5 × 10−4s (≈ 5)

Residual rc = 10−4 X X X

Residual rc = 10−3 X

Residual rc = 10−2 X

Residual rc = 10−1 X X

1 SIMPLE-Iteration X
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Fig. 8 Influence of the time step size. Profiles of the normalized mean velocity
component < u >/ub at different locations

4 Results

4.1 Influence of the Time Step Size

Figure 8 shows the profiles of the normalized mean streamwise velocity com-
ponent <u> /ub for three different time step sizes and corresponding CFL
numbers of approximately 1, 2, and 5 for a convergence criterion of rc = 10−4

and for CFL ≈ 5 also for rc = 10−4. At all considered locations the profiles
are in good agreement with the reference solution (LES – fine grid). Also the
results for the weakest convergence criterion are not worse than those of the
other simulations. There are no significant differences between the results for
the averaged velocities for the different time step sizes. In Fig. 9 the profiles
of the normalized mean streamwise fluctuations <u′u′> /u2

b are shown. At
the positions x/h = 0.05 and x/h = 8 profiles are in very good agreement
with the reference solution (LES – fine grid) for all simulations with the strict
convergence criterion of rc = 10−4. But there are differences at the other two
locations. These differences can be explained by the relatively short period of
time (40 flow-through times) where averaging was performed.
For the case CFL ≈ 5 and rc = 10−1 the results differ from the others at
the positions x/h = 0.05, x/h = 2 and x/h = 6 even though averaging was
performed for the same time interval. It seems that the combination of a big
time step size and a weak convergence criterion affects the results of the simu-
lation whereas the sole variation of the time step size (in the considered range)
shows no effect to the computational results.

Frequency Spectra

Figure 10 shows streamwise turbulent kinetic energy spectra taken at three
different monitoring points (MP) for the smallest time step size with corre-
sponding CFL ≈ 1 and the largest one with CFL ≈ 5. The monitoring points
are located in the center of the computational domain (MP1), the center of the
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Fig. 9 Influence of the time step size. Profiles of the normalized mean fluctuations
< u′u′ >/u2

b at different locations

Fig. 10 Influence of the time step size. Streamwise turbulent kinetic energy spec-
trum taken at three different locations (compare Fig. 3)

recirculation area (MP2) as well as close to the wall (MP3) and the stream-
wise position x/h = 2 (compare Fig. 3). The spectra show the same behavior
for both time step sizes at the considered monitoring points up to higher fre-
quencies that contain only little energy. This means that the time step size
(at least in the considered range) has only a small effect on the modeled part
of the energy spectrum. This indicates clearly that even for CFL ≈ 5 the
time step size is small enough to resolve the relevant scales. Furthermore the
highest CFL numbers occur farer away from the wall. This is also reflected
in the frequency spectra of MP2 and MP3 that are more similar for the two
considered time step sizes.
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4.2 Influence of the Convergence Criterion

Figure 11 shows the profiles of the normalized mean streamwise velocity com-
ponent <u>/ub for the convergence criteria rc = 10−1 and rc = 10−4 as well
as for the case with only one SIMPLE-Iteration per time step. The results for
rc = 10−2 and rc = 10−3 are comparable to those of the other simulations
and therefore not shown for purposes of clarity. At all considered locations
the profiles are in very good agreement with the reference solution (LES –
fine grid).

In Fig. 12 the profiles of the normalized mean streamwise fluctuations
<u′u′>/u2

b are shown.
For the different convergence criteria no significant differences between the
results for the velocities and fluctuations can be observed. Even the setup
without any convergence check and only one SIMPLE-Iteration per time step
gives the same results. The differences can again be explained by the relatively
small averaging interval.

Fig. 11 Influence of the convergence criterion. Profiles of the normalized mean
velocity component < u >/ub at different locations

Fig. 12 Influence of the convergence criterion. Profiles of the normalized mean
fluctuations < u′u′ >/u2

b at different locations
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Fig. 13 Convergence behavior for different time step sizes at a fully developed
turbulent state

4.3 Comparison of Computational Times

The use of bigger time steps may also affect the convergence behavior because
the differences between the time steps are bigger and therefore the initial
solution for the new time step may be worse. For this reason the calculation
time which is needed for a single time step may also be different. Figure 13
shows the convergence behavior for the three different time step sizes with the
corresponding CFL numbers of approximately 1, 2, and 5.
For time step sizes with CFL ≈ 1 and CFL ≈ 2 the convergence process is
almost identical. The residual reduction is insignificantly smaller for CFL ≈ 2
than for CFL ≈ 1 so that the same number of iterations was needed to
reach the applied convergence criterion of rc = 10−4. The simulation with
CFL ≈ 5 shows a considerably worse convergence behavior. More than twice
as many iterations on the finest grid level were needed to reach the convergence
criterion. This case is the only one were a geometric multigrid scheme was
applied. For all the other cases the multigrid method did not yield any benefit.
The setup with CFL ≈ 5 and the weak convergence criterion of rc = 10−1

again showed a good convergence behavior.
Figure 14 shows the convergence behavior for different convergence criteria.

For the applied convergence criteria the residual reduction per iteration (until
the applied convergence criterion was reached) is almost identical. The residual
for the case with only one SIMPLE-Iteration is not shown. It stayed almost
constant around a value of r ≈ 1.45. The computational times needed for one
time step for the different setups are summarized in Table 2.

5 Conclusions

In this work results of large eddy simulations of the “Periodic flow over a 2D
hill” for different convergence criteria and time step sizes were presented and
discussed.
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Fig. 14 Convergence behavior for different convergence criteria at a fully developed
turbulent state

Table 2 Computational time per time step (2 IBM Power 5 Processors with 1.9
GHz)

Δt (CFL) 5 × 10−5s (≈ 1) 10−4s (≈ 2) 2.5 × 10−4s (≈ 5)

Residual rc = 10−4 76.4 s 76.6 s 233.9 s

Residual rc = 10−3 44.2 s / /

Residual rc = 10−2 26.6 s / /

Residual rc = 10−1 18.5 s / 38.4 s

1 Simple-Iteration 7.6 s / /

For the considered test case the differences of mean velocities and mean fluc-
tuations are negligible for different time step sizes as well as for different con-
vergence criteria in the considered range, except for the case with the biggest
time step size and the weakest applied convergence criterion. Even the setup
with only one SIMPLE-Iteration per time step gave good results.
So it can be stated that the simulations with the weaker convergence criteria
are more efficient.
The case with CFL ≈ 2 is the most efficient of the three setups with different
time step sizes and the strictest convergence criterion. The simulation with
the biggest time step size (corresponding CFL ≈ 5) showed a worse conver-
gence behavior, so that more computational time was needed to simulate a
given time interval as with CFL ≈ 2.
In summary it may be said that for this kind of flow problems (wall bounded
flows) where the highest CFL numbers occur in the center of the computa-
tional domain and they are rather low close to the wall, the time step size has
no influence on averaged results. Also the frequency spectra show the same
behavior up to higher frequencies which means that the amount of energy
contained in the subgrid scales is approximately the same. For very large time
step sizes the convergence behavior gets worse so that more computational
time is needed to simulate the desired time interval than with a smaller time
step size. For this kind of flow this seems to be the limiting factor for the time
step size. So this behavior can be utilized to adjust the time step size during
the simulation in order to find the most efficient setup.
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Abstract. A large-eddy simulation database of homogeneous isotropic decaying
turbulence is used to assess four different LES quality measures that have been
proposed in the literature. The Smagorinsky subgrid model was adopted and the
eddy-viscosity ‘parameter’ CS and the grid spacing h were varied systematically. It is
shown that two methods qualitatively predict the basic features of an error landscape
including an optimal refinement trajectory. These methods are based on variants of
Richardson extrapolation and assume that the numerical error and the modelling
error scale with a power of the mesh size. Hence they require the combination of
simulations on several grids. The results illustrate that an approximate optimal
refinement strategy can be constructed based on LES output only, without the
need for DNS data. Comparison with the full error landscape shows the suitability
of the different methods in the error assessment for homogeneous turbulence. The
ratio of the estimated turbulent kinetic energy error and the ‘true’ turbulent kinetic
energy error calculated from DNS is studied for different Smagorinsky parameters
and different grid sizes. The behaviour of this quantity for decreasing mesh size gives
further insight into the reliability of these methods.

Keywords: Large-eddy simulation, Quality, Assessment measures, Error landscape

1 Introduction

Due to considerable progress of the Large Eddy Simulation (LES) technique
combined with a steady increase in computing power, more and more complex
flow problems become computationally tractable. Nevertheless, some funda-
mental problems of the LES formalism remain unsolved. In particular, the
application of LES demands for reliable quality assessment procedures.

J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, 131
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Numerical and modeling errors have been extensively studied in the past
[17, 8, 5, 10, 3, 11] and the investigations led to a better understanding of their
interaction and their impact. Several authors attempted to define indices of
quality, or error estimators in order to judge the reliability of a given LES.
For an overview see, e.g. [2].

Meyers et al. [10, 13] proposed a method to assess LES using a database
of pre-computed cases in order to obtain an overview of the error behaviour
in the form of so-called error landscapes. In the illustration of this method
DNS data of decaying homogeneous isotropic turbulence was adopted yield-
ing a well-defined error surface as a function of grid resolution N = 1/h and
model parameter CS . Though this method yields interesting insights in error-
behaviour of LES, it is an a posteriori approach, requiring a large number of
large-eddy simulations. An alternative was recently proposed by Geurts and
Meyers [6] in which an optimal Smagorinsky constant was determined itera-
tively, at fixed resolution. This method was shown to require about 5 complete
large-eddy simulations to reach an accurate estimate of the optimal Smagorin-
sky parameter. It was illustrated using an error-measure defined relative to
DNS data.

This paper explores the possibility of substituting the calculation of the
‘true’ error, with an estimated simulation error. We investigate estimates
in terms of LES data only, and study to what extent an independent ‘self-
consistent’ error-control can be arrived at. The error landscape approach is
subsequently used as a tool to assess the quality measures themselves.

2 Error Landscapes

The different error estimators considered in this paper are evaluated using a
LES and DNS database consisting of more than 100 simulations of decaying
homogeneous isotropic turbulence, recorded at two different Taylor Reynolds
numbers Reλ = 50, 100 [10]. The following grid resolutions 243, 323, 403, 483,
563, 643, 803, 963, 1283 have been used together with 20 different settings for
the Smagorinksy parameter in the range from 0.0 to 0.2840.

Meyers et al. [10, 11] consider the time integrated relative turbulent kinetic
energy deviation between LES and DNS as an error measure. We propose an
analogous measure, in terms of LES data. In the current study, the time-
averaging is replaced by averaging over two instants in time t = 0.5, 1.0.

Given DNS data for the decay of the turbulent kinetic energy, an error-
measure can be defined as:

δE(N,Cs) =

⎡
⎢⎢⎣

∑
t=0.5,1.0

(ELES(t,N,Cs)− EDNS(t))2

∑
t=0.5,1.0

EDNS(t)2

⎤
⎥⎥⎦

1/2

, (1)

For any LES at given N and CS this yields an impression of the relative error.
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Fig. 1 Error landscapes for δE(N, Cs) obtained from DNS for Reλ = 50 (left) and
Reλ = 100 (right). The bold line represents the optimal refinement strategy. The
box in the figures encloses the parameter range where the error estimators have been
evaluated in Section 4

Using the error estimators introduced in Section 3 the presumed deviation
based on these estimators can be defined in analogy to (1). We make two
alterations: first, the difference between ELES and EDNS is replaced by one
of the error estimators introduced below, and second, we normalize the error-
measure with a reference value Eref that can be obtained from LES instead
of the DNS data as in (1). One could for example think of replacing Eref

with ELES(t,Nref , Cs,ref ) or with a value ELES(t) extrapolated from the
finest available LES grids. Since this is a normalization, this will only affect
to global level of the results, but not the shape of the estimated errors as
function of N and Cs. For the purpose of illustration of the method, Equation
(2) is in this work normalized with the DNS value.

These two steps can be criticized in many ways and their generality and
robustness is not established, but at least the principle provides an operational
error assessment that can be directly confronted with the full error-landscape
procedure based on (1). In detail, we estimate:

D(N,Cs) =

⎡
⎢⎢⎣

∑
t=0.5,1.0

Eest(t,N,Cs)2

∑
t=0.5,1.0

Eref (t,N,Cs)2

⎤
⎥⎥⎦

1/2

(2)

Based on these definitions simulation errors can be shown in the form of so
called error landscapes [10, 11] and an optimal refinement strategy can be
identified as the Smagorinsky coefficient Ĉs(N) for which the error δE(N,Cs)
or D(N,Cs) is minimal. As an example Fig. 1 shows the error landscapes
for δE(N,Cs) for Reλ = 50 (left) and Reλ = 100 (right) together with the
optimal refinement strategy (bold line).
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3 LES Quality Measures

Roache [15] gives the following taxonomy for obtaining information for error
estimates in the context of RANS simulations. These also apply to LES and
are summarized as follows:

1. Additional solutions of the governing equations on other grids
Grid refinement/coarsening/other unrelated grids

2. Additional solutions of governing equations on the same grid
Higher/lower order accuracy solutions

3. Auxiliary PDE solutions on the same grid
Solution of an error equation

4. Auxiliary algebraic evaluations on the same grid; surrogate estimators
Non conservation of higher order moments (e.g. turbulent kinetic energy),
methods developed for grid adaption, convergence of higher order quadra-
tures (e.g. evaluation of a drag coefficient) etc.

This paper focuses on methods which can be applied to the decaying ho-
mogeneous isotropic turbulence database established in [10, 13]. We will not
consider methods belonging to category 2 or 3. Instead, we focus on four
error estimators from category 1 and 4. We restrict ourselves to estimating
the turbulent kinetic energy error EDNS − ELES following [2, 1, 4, 7]. It is
important to remark that this is a difference between the kinetic energy in
the unfiltered reference DNS and the LES. By formally defining a LES fil-
ter (denoted here with an overline), EDNS − ELES may be further split into
Esgs = EDNS − EDNS and EDNS − ELES (where EDNS is the energy in
the filtered DNS). It is the latter difference that is usually defined as the LES
simulation error on the kinetic energy [3, 10, 17]. However, for the Smagorin-
sky model (and many other models), the LES filter is not explicitly defined in
the computational method, and implicitly related to the computational mesh
at best. Hence, in practice the formal LES filter remains a mathematical ab-
straction, which makes a precise definition of EDNS − EDNS ambiguous.

Therefore, the error estimation methods in [2, 1, 4, 7] follow a more prag-
matic approach, i.e. they lump Esgs and EDNS − ELES together, trying to
estimate the combined term. This may be supported by two empirical obser-
vations. First of all, in order to guarantee a good LES prediction, a sufficient
amount of energy should be resolved on the computational mesh (e.g., Celik
et al. [1] suggest at least 80%). Hence, Esgs should remain small, and may be
included in an error estimation. Secondly, for the Smagorinsky model, it was
observed that differences in the formal LES filter definition in the calculation
of EDNS − ELES (including a ‘no-filter’ case) did not lead to appreciable
differences in the overal shape of the error-landscape, and only the absolute
levels of the error shifted [10]. Obviously, this observation should be handled
with care when other subgrid-scale models are considered.

In the current study, two methods estimate EDNS − ELES based on the
turbulent viscosity νt obtained during the simulation and hence do not account
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for numerical errors unless νt is modififed for this purpose. The other two
methods use information from additional simulations in order to calculate the
error estimate based on variants of Richardson extrapolation.

Similar to the subgrid activity parameter 〈εt〉/(〈εt〉+ 〈εμ〉) introduced by
Geurts and Fröhlich [5], the ELESIQν

relates the turbulent viscosity to the
laminar viscosity using the following expression (Celik et al. [1]):

LESIQν =
1

1 + 0.05
(

〈ν+νt〉
ν

)0.53 (3)

The LESIQν is a dimensionless number between zero and one. The constants
are calibrated in such a way that the index behaves similar to the ratio of
resolved to total turbulent kinetic energy, i.e. ELES/EDNS . An index of quality
greater than 0.8 is considered a good LES, 0.95 and higher is considered as
DNS [1]. To make it comparable to the other error measures given below, a
modified expression (4) is used in this work:

Eest
LESIQν

=

⎡
⎢⎣1− 1

1 + 0.05
(

〈ν+νt〉
ν

)0.53

⎤
⎥⎦ · EDNS (4)

Another frequently used approach for evaluating the subgrid-scale turbu-
lent kinetic energy based on the turbulent viscosity and the filter width Δ is
due to Lilly [9],

Eest
Lilly = ν2

t

/
(cΔ)2, c = 0.094 (5)

The LES Index of quality ELESIQ proposed by Celik et al. [1] is based
on Richardson extrapolation assuming that the scaling exponents m,n for
modelling and numerical error are known and coincide.

Eest
LESIQ =

|E2 − E1|
1− βn

(6)

Two simulations have to be performed on computational grids with grid spac-
ing h resp. βh. The LES turbulent kinetic energy on these two grids is denoted
E1 and E2.

The evaluation of the error using the sytemactic grid and model variation
ESGMV approach [7, 4] is based on three simulations. One standard LES
solution, a second LES on a different grid and a third LES using a modified
model parameter. It is assumed that the numerical error and the modelling
error scale with the mesh size h like cnh

n resp. cmhm. The subgrid scale
turbulent kinetic engergy is than estimated as:

Eest
SGMV =

∣∣∣∣ (E3 − E1)
(1− α)

∣∣∣∣+
∣∣∣∣∣∣

(E2 − E1)− (E3 − E1)
(1−βm)
(1−α)

1− βn

∣∣∣∣∣∣ (7)
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Here E1 is the standard LES solution, E2 the coarse grid LES solution and
E3 the LES solution on the standard LES grid, but with a modified model
parameter, i.e., C2

S,3 = α C2
S,1. Especially for higher Reynolds number flows

α > 1 is suggested in order to avoid numerical stability problems. The 1D
grid coarsening factor is again denoted by β. Since the method is designed for
practical applications grid coarsening is proposed. A value of beta too close
to one is not recommended in the context of Richardson extrapolation [15], a
value higher than 2 is not of much interest. Throughout, we adopt α = 4 and
β = 2. The scaling exponent of the numerical error has been set to n = 2.
This is based on the fact that a fully second order numerical scheme was used
to generate the DNS database. The scaling for the modeling error was set to
m = 2/3 which is identical to the theoretical prediction [16, 14]. For more
details see [2, 4] and the references therein.

4 Assessment of LES Quality Measures

In this section we combine the error landscape approach with the error esti-
mators introduced above, in order to assess their quality and reliability. The
SGMV method requires three simulations in order to evaluate the estimated
error. In view of the enormous amount of possible combinations to select three
LES runs from the database presented in Section 2 the following choice has
been made: (i) only grid coarsening by a factor of two is considered. (ii) for
the model variation the model parameter is increased by a factor of four. In
case the database did not contain an exact factor four increase, a deviation
of up to 25% was allowed. This implies that the estimated error is only avail-
able for grid resolution 483 or higher. Based on these two criteria all possible
combinations of three simulations have been choosen from the database to es-
timate the simulation error for the SGMV method. The same cases were used
for the other error estimators. This serves as the basis for the comparison. It
is important to note that the systematic grid and model variation as well as
the LESIQ can also be used for values of β less than two. Alternatively also
grid refinement, i.e. β < 1 would be possible. Another option would be to
perform the LES simulation with the modified model parameter on the coarse
grid instead of the fine grid and certainly the value of α could be changed as
well. The presentation of all these variations is however beyond the scope of
this work and left for future discussions.

In the remainder of this section we assess the four error estimators using
the following guidelines:

• An optimal refinement trajectory can be approximated
• The ratio of estimated and true error D(N,Cs)/δE(N,Cs) should be as

close as possible to unity, or in general a constant value, depending on the
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reference Eref which is employed. As a minimum requirement this is at
least expected for small mesh sizes.

• Overestimation of error, i.e. conservatism, is preferred over underestima-
tion of error.

4.1 Approximative Error Landscapes

Figures 2 and 3 show the error landscapes for D(N,Cs) calculated from the
estimators given in (4), (5), (6), (7) for Reλ = 50 resp. Reλ = 100. We com-
pare these with the error landscape for δE(N,Cs) obtained by using a DNS as
point of reference, see Fig. 1. The true error landscapes in Fig. 1 defined rel-
ative to DNS data include a window indicating the parameter range in which
the error-estimators have been assessed. Note that the horizontal and vertical
scales differ. It can be observed that the systematic grid and model variation
(SGMV) and the LES index of quality (LESIQ) are able to capture some char-
acteristics of the actual error landscape obtained via DNS. Particularly these
two error estimators are capable to predict an optimal refinement strategy as
defined in [10]. This is in contrast to ELESIQν

and ELilly which are based on
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Fig. 2 Error landscapes for D(N, Cs) calculated from 4 different error estimators
for Reλ = 50. The bold line represents the optimal refinement strategy
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Fig. 3 Error landscapes for D(N, Cs) calculated from 4 different error estimators
for Reλ = 100. The bold line represents the optimal refinement strategy

a single grid calculation. Here the predicted error basically decreases with the
model parameter, hence the optimal model parameter would be zero.

4.2 Convergence of Error Estimators

In addition to the error landscapes it is interesting to investigate the mag-
nitude of D(N,Cs) to δE(N,Cs). Ideally the ratio of both quantities should
be as close as possible to one. Due to the fact that the assumption of an
assymptotic convergence behavior might not always be fullfilled, larger de-
viations are expected on coarser grids. However as a minimum requirement
D(N,Cs)/δE(N,Cs) should approach unity for decreasing mesh size. Figures 4
and 5 show, for different but fixed model parameters, the ratio of the estimated
error and true error D(N,Cs)/δE(N,Cs) for the four different approaches and
the two Reynolds numbers. Note the double logarithmic plot.

The following observations can be made:

• LESIQν diverges from unity for decreasing mesh size, i.e. the error esti-
mate gets worse on finer grids.
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• Lilly’s approach underpredicts the error considerably. This is consistent
with the findings in [7]. For a constant Smagorinsky parameter the esti-
mated error does not converge towards the true error for decreasing mesh
size.

• LESIQ and SGMV converge towards the true error for decreasing mesh
size. Bigger discrepancies arise especially from unrealistic low model pa-
rameters. Note that the dash-dotted lines correspond to Cs < 1.0.

• The LESIQ has a tendency to underpredict the error at coarse mesh sizes.
• The SGMV shows a more conservative error estimation behaviour. This is

due to the fact that modelling and numerical error are treated separately
and that the estimated error is the sum of their absolute values.

• The database consists of many simulations using rahter unphysical model
parameters. For Cs = 0.156, a value close to the theoretical expecations for
isotropic decaying turbulence, especially Lilly’s approach and the SGMV
show a good performace with 0.5 ≤ D(N,Cs)/δE(N,Cs) ≤ 2.0.
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Fig. 4 Estimated error divided by true error plotted against grid resolution for
different Smagorinsky parameters at Reλ = 50
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Fig. 5 Estimated error divided by true error plotted against grid resolution for
different Smagorinsky parameters at Reλ = 100 (see legend in Fig. 4)

5 Conclusion

A large-eddy simulation database of homogeneous isotropic decaying turbu-
lence has been used to assess the following LES quality measures ranging
from single grid to three simulation studies: The LESIQν , Lilly’s approach to
estimate the subgrid scale turbulent kinetic energy, the LES index of qual-
ity based on Richardson extrapolation and the systematic grid and model
variation (SGMV). The results suggest that only by performing additional
simulations on different grids the basic features of an an error landscape, in-
cluding an optimal refinement trajectory, can be captured. Among these two
methods, i.e. LESIQ and SGMV, the systematic grid and model variation
provides for the configuration under consideration a more conservative error
estimate.

The extension of the present work to different spatial discretization schemes
[12] as well as the consideration of other flow propeties as error measures [13]
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is part of the work in progress. The application of the systematic grid and
model variation and the LESIQ to more complex flow configurations has been
discussed in the literature, see [2] for an overview.
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5. Geurts BJ, Fröhlich J (2002) A framework for predicting accuracy limitations
in large eddy simulations. Physics of Fluids 14(6):L41–L44

6. Geurts BJ, Meyers J (2006) Successive inverse polynomial interpolation to opti-
mize Smagorinsky’s model for large-eddy simulation of homogeneous turbulence.
Physics of Fluids 18, Art no 118102

7. Klein M (2005) An attempt to assess the quality of large eddy simulations in
the context of implicit filtering. Flow Turbulence and Combustion 75:131–147

8. Kravchenko AG, Moin P (1997) On the effect of numerical errors in large eddy
simulation of turbulent flows. Journal of Computational Physics 131:310–322

9. Lilly DK (1967) The representation of small scale turbulence in mumerical simu-
lation experiments. In: Proceedings of the IBM Scientific Computing Symposium
on Environmental Sciences:195–210

10. Meyers J, Geurts BJ, Baelmans M (2003) Database analysis of errors in large-
eddy simulation. Physics of Fluids 15(9):2740–2755

11. Meyers J, Geurts BJ, Baelmans M (2005) Optimality of the dynamic procedure
for large-eddy simulations. Physics of Fluids 17, Art no 045108

12. Meyers J, Geurts BJ, Sagaut P (2007) A computational error assessment of cen-
tral finite volume discretizations in large-eddy simulation using a Smagorinsky
model. Journal of Computational Physics 227:156–173

13. Meyers J, Sagaut P, Geurts BJ (2006) Optimal model parameters for multi-
objective large-eddy simulations. Physics of Fluids 18, Art no 095103

14. Pope SB (2000) Turbulent Flows. Cambridge Universtiy Press
15. Roache PJ (1998) Verification and Validation in Computational Science and

Engineering. Hermosa Publishers, Albuquerque



142 M. Klein et al.

16. Sagaut P (1998) Large Eddy Simulation for Incompressible Flows. Springer,
Berlin

17. Vreman B, Geurts B, Kuerten H (1996) Comparison of numerical schemes in
large-eddy simulation of the temporal mixing layer. International Journal for
Numerical Methods in Fluids 22:297–311



Analysis of Numerical Error Reduction in
Explicitly Filtered LES Using Two-Point
Turbulence Closure

Julien Berland1, Christophe Bogey2, and Christophe Bailly2

1 SINUMEF, ENSAM, 151 boulevard de l’Hôpital, 75013 Paris, France
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Abstract. Numerical errors in large-eddy simulation (LES) are investigated using
the eddy-damped quasi-normal Markovian (EDQNM) modeling approach, for finite
differences of order 2 to 14, and for optimized differentiation schemes. An EDQNM-
LES model is derived to evaluate numerical errors, namely the aliasing and the
differentiation errors. The results show that the aliasing errors are negligible whereas
the interactions between wavenumbers close to the mesh cut-off wavenumber are
responsible for a major part of the differentiation errors. In addition, the accuracy
of a LES calculation is seen to be improved when explicit filtering of the higher part
of the turbulence spectrum is introduced.

Keywords: Large-eddy simulation, EDQNM, Approximate differentiation, Order
of accuracy

1 Introduction

Numerical solution of turbulent flow problems can be accomplished using
various levels of approximation. In Large-Eddy Simulations (LES), only the
larger scales are solved while the smaller ones are taken into account through
a SubGrid-Scale (SGS) model [1]. Since the early works of Smagorinsky [2]
numerous SGS models have been proposed with the aim of describing the
behavior of unresolved scales based on the knowledge of the resolved velocity
field. One may for instance refer to the review of Lesieur & Métais [3] for an
overview of LES techniques for incompressible flows.

A large variety of SGS modeling procedures have been derived based on
physical assumptions applying to the filtered Navier-Stokes equations, and
reference to the discretization methods is seldom made. LES performed with
explicit models for the residual motions and assuming negligible numerical
errors are referred to as pure physical LES by Pope [4]. Numerical accuracy
in the framework of LES is however a delicate issue.
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The investigation of numerical errors in LES requires the design of ac-
curacy estimators which encompass the numerical procedures and the physi-
cal model (the filtered Navier-Stokes equations). A first extensive theoretical
framework allowing quantitative evaluation of numerical errors in LES has
been proposed by Ghosal [5] and has been referred to as static error analysis
later on by Park & Mahesh [6]. The static error analysis provides a formal
model in the spectral space of the numerical implementation of a LES. The
numerical errors are then defined by evaluating the deviation of the numerical
system from the exact model, and the error is computed assuming a Gaussian
state for the velocity field. Two major sources of errors, approximate differ-
entiation and aliasing, have been identified by Ghosal [5]. The static error
analysis shows that second-order discretization schemes introduce errors with
magnitude larger than the subgrid-scale terms. A filter with a filter-width-to-
mesh-size ratio of 8 then needs to be implemented to remove poorly resolved
scales. Ghosal’s study shows in addition that for eight-order schemes a fil-
ter width twice as large as the grid spacing is enough to ensure numerical
accuracy. High-order algorithms hence turn out to be more appropriate.

Even if the static error analysis provides insightful details on numerical er-
rors in LES, the method does not fully reproduce the variety of phenomenon
involved in simulations. In particular, as pointed out by Park & Mahesh [6],
the dynamical interactions cannot be taken into account with a static ap-
proach. The dynamic error analysis can nevertheless be performed by apply-
ing the Eddy-Damped Quasi-Normal Markovian (EDQNM) set of hypothesis
to the LES approach in order to design a so-called “EDQNM-LES” model [6].
This theoretical framework permits to compute the time evolution of the ki-
netic energy spectrum obtained by a LES, which includes the numerical meth-
ods, for incompressible homogeneous isotropic turbulence. For instance, Park
& Mahesh [6] makes use of the EDQNM-LES approach to study numerical
errors in LES.

The present work is an attempt to study the influence of the order of
accuracy of discretization algorithms on numerical error magnitudes within
LES. Following similar developments to those proposed by Park & Mahesh [6],
an EDQNM-LES model is derived to evaluate the time evolution of kinetic
energy spectra obtained from LES performed with numerical differentiation
methods of various order of accuracy (from 2nd order to 14th order), and with
optimized finite difference schemes [7]. The numerical errors in LES are consid-
ered for a turbulent field at Reynolds number Reλ equal to 2500 based on the
Taylor scale. The classical EDQNM theory, referred to as “EDQNM-DNS”, is
first employed to determine reference kinetic energy spectra. The numerical
errors are then defined and computed by comparing the EDQNM-LES spectra
to the EDQNM-DNS spectra. The EDQNM-DNS and EDQNM-LES models
are presented in Section 2 along with the definitions of the numerical errors.
The reference solutions and the results of the EDQNM-LES calculations are
shown in Section 3. Concluding remarks are finally drawn in Section 4.
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2 Two-Point Stochastic Closure for Numerical Error
Analysis of LES

2.1 EDQNM-DNS Model

Using the Eddy-Damped Quasi-Normal Markovian (EDQNM) modeling ap-
proach, the time evolution of the kinetic energy spectrum E(k) at a wavenum-
ber k, for a freely decaying homogeneous isotropic incompressible turbulent
field, can be written as

(
∂

∂t
+ 2νk2

)
E(k) = T (k), (1)

where time dependence of the spectrum is implicit and ν stands for the vis-
cosity. The energy energy transfers due to triadic interactions are represented
by T (k). The derivation of Equation (1) and the explicit formulation of T (k)
are not given here but can be found in Lesieur [8] for instance.

2.2 EDQNM-LES Model

Consider the large-eddy simulation of a freely decaying homogeneous isotropic
turbulence with a cut-off wavenumber kc. The derivation of the EDQNM-DNS
model describing the numerical implementation of an LES has been carried
analytically by Park & Mahesh [6]. The time evolution of the truncated kinetic
energy spectrum E• (E•(k) = 0 for k > kc) of the LES velocity field is given
by

(
∂

∂t
+ 2νtk

2 + 2νχ2
kk

2

)
E•(k) = Tnl(k) + Tal(k), (2)

where Tnl(k) corresponds to the energy transfers due to triadic interactions
between resolved scales and Tal(k) takes into account aliasing effects occurring
when nonlinear terms are discretized [6]. An eddy-viscosity based subgrid-
scale model is introduced by imposing a non-zero turbulent viscosity νt(k),
which can be defined in the spectral space. The approximate differentiation
is characterized by the isotropic ratio χk between the norm of the modified
wavenumber and the exact wavenumber, with,

χk =
1
4π

∫
θ∈[0,2π]

∫
ϕ∈[0,π]

k̃α

kα
sinϕdϕdθ, (3)

where kα is an arbitrary component of k. For instance, for α = 1, we have
kα = k sinϕ cos θ.



146 J. Berland et al.

2.3 Numerical Error Assessment

Numerical Error Definitions

Consider the EDQNM-DNS model. Following a subgrid-scale modeling point
of view, a truncation at the wavenumber kc is introduced into Equation (1):

(
∂

∂t
+ 2νk2

)
E(k) = T<(k|kc) + T>(k|kc) (4)

where it is assumed that k < kc. The contribution T<(k|kc) from the re-
solved scales corresponds to the triadic interactions (k, p, q) such as p and
q are lower than kc. The non-resolved transfers T>(k|kc) take into account
the nonlinear couplings between triads (k, p, q) with p or q greater than the
cut-off wavenumber kc. The subgrid-scale contribution is hence provided by
T>(k|kc) [9].

The numerical errors are defined by comparing the EDQNM-LES model (4)
to the EDQNM-DNS formulation (1). Assuming that the LES provides the
exact kinetic energy spectrum (i.e. E•(k) = E(k) for k < kc), the differ-
ence (1)–(4) between the two governing equations should remain equal to
zero, so that

Tnl(k)− T<(k|kc)− 2νk2
[
E(k)− χ2

kE
•(k)

]
︸ ︷︷ ︸

differentiation

+ Tal(k)︸ ︷︷ ︸
aliasing

+ 2νtk
2E•(k)− T>(k|kc)︸ ︷︷ ︸

s.g.s.

= 0 (5)

Numerical errors can be estimated by the magnitudes of the above terms. The
following quantities are then introduced

Efd(k) =
∣∣Tnl(k)− T<(k|kc)

∣∣+ ∣∣2νk2
[
E(k)− χ2

kE
•(k)

]∣∣ (6)
Eal(k) = |Tal(k)| (7)

Msgs(k) =
∣∣T>(k|kc)

∣∣ . (8)

The differentiation error Efd(k) evaluates the inaccuracies due to the approx-
imate differentiation algorithms since it compares in particular the difference
between the approximate evaluation of the triadic interactions within the
mesh and the exact energy transfers T<(k|kc) due to the resolved scales. The
aliasing errors Eal(k) provides the magnitude of the aliasing effects. Finally,
the amplitude Msgs(k) of the subgrid scales contribution deduced from the
EDQNM-DNS is employed in this work as an acceptable upper-bound for the
numerical errors [5].



Analysis of Numerical Error in LES 147

k

k

k

k kc

kc

p p

q q

Δk

Δ>
k|kc

Δ<
k|kc

(a) (b)

Fig. 1 Sketch in the (p, q)-plane of the integration domains used to compute the
nonlinear transfers for the EDQNM calculation. (a) Full domain, and (b) separation
into a resolved and a non-resolved domain given a cut-off wavenumber kc

Detailed Scale Contribution to the Errors

If we consider the error definitions, it is interesting to assess which scales are
mainly responsible for the numerical errors. Let E(k) be the spectrum of a
numerical error. One may show that E(k) can be written as

E(k) =
∫∫

Δk

s(k, p, q) dpdq, (9)

where s(k, p, q) is the integrand and the integration domain Δk, shown in
Fig. 1.a, is such as

Δk =
{

(p, q) | k + q ≥ p ≥ |k − q|
}

=
{

(p, q) | |z| ≤ 1
}
. (10)

While calculating E(k), one may restrict the domain of integration to scales
smaller than a given wavenumber k′. This can be done by replacing the
quadrature domain Δk in (9) by Δ<

k|k′ , represented in Fig. 1.b, so that a
new quantity E∗(k, k′) is obtained, with

E∗(k, k′) =
∫∫

Δ<
k|k′

s(k, p, q) dpdq (11)

Taking the derivative with respect to k′ then yields

ζ(k, k′) =
∂

∂k′
[E∗(k, k′)] (12)

This quantity ζ(k, k′), referred to as the detailed scale contribution, estimates
the net effect on the error E(k) when scales with wavenumbers between k′ and
k′ + dk′ are taken into account in the integral (9).
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Fig. 2 Time evolution of the kinetic energy spectrum E(k) provided by the EDQNM
calculation, as a function of the wavenumber k, for Reλ = 2500. , E(k, t∗ =
0); , E(k, t∗) for t∗ = 1, 2, 8; , E(k) ∝ k−5/3

3 Results

3.1 Reference Solution (EDQNM-DNS)

The EDQNM calculation has been performed with Reynolds number Reλ

equal to 2500. The dimensionless time t∗ = k0v0t is introduced with k0 = 1
and v0 = 1, which represent typical values of the wavenumber and of the ve-
locity of the energy containing scales. An EDNQM-DNS calculation has been
carried out up to t∗ = 20. The results are evaluated at t∗ = 8, once the de-
cay of the kinetic energy spectrum has become self-similar. This evolution is
illustrated in Fig. 2 where the kinetic energy spectra obtained for Reλ = 2500
at t∗ equal 0, 1, 2 and 8 are plotted against the wavenumber k. Starting at
t∗ = 0 from an energy distribution mainly clustered on small wavenumbers,
the kinetic energy spectral density E(k) then progressively converges towards
a turbulent spectrum with a well defined inertial range lying up to the dissi-
pative scales.

3.2 EDQNM-LES

Run Parameters

The EDQNM-LES calculations are performed using the parameters of the
EDQNM-DNS. A turbulent field at Reynolds numbers 2500 is considered with
a cut-off wavenumber kc equal to 32. Approximate derivatives are carried
out by standard finite differences of order ranging from 2 to 14. To avoid
any discussion about numerical errors during the transient evolution of the
spectrum, the EDQNM-LES computations are initialized at t∗ = 8 with the
spectra deduced from the EDQNM-DNS, truncated truncated at the cut-off
wavenumber kc.
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Fig. 3 Evolved kinetic energy spectra at t∗ = 16 provided by the EDQNM-LES
calculations for Reλ = 2500 and kc = 32, for 2nd order and 10th order approximate
derivatives, with spectral eddy-viscosity. , 2nd order approximate differen-
tiation; , 10th order approximate differentiation; , EDQNM-DNS
reference solution. (The dotted line stands for the LES cut-off wavenumber.)

Evolved Spectra

Approximate differentiation operators unfortunately introduce numerical er-
rors. This trend is illustrated in Fig. 3 where the evolved kinetic energy spec-
tra obtained with the EDQNM-LES model (2) and with the spectral eddy-
viscosity of Chollet [10] are plotted at t∗ = 16 and for Reλ = 2500 and kc = 32.
The results obtained for the 2nd and 10th order finite differences are presented
as well as the reference spectrum of the EDQNM-DNS calculation. Discrepan-
cies between the EDQNM-LES spectra and the reference spectra are clearly
visible for both order of accuracy. The wavenumbers close to the mesh cut-off
wavenumber are particularly poorly resolved with strong underestimations of
the kinetic energy.

3.3 Differentiation Errors

As already pointed out by Park & Mahesh [6], the investigation the present
results show that the aliasing effects have a weak influence on the solution
quality. The study will therefore focus on the differentiation errors.

Order of Accuracy

Consider first Fig. 4 where the differentiation error Efd(k) is plotted against
the normalized wavenumber k/kc for approximate derivatives of order 2, 6, 10
and 14. The results are calculated at the beginning of the calculation (t∗ = 8)
with Reλ = 2500 and kc = 32. The modulus of the subgrid-scale contribution
|T>(k|kc)| is also represented and used as an acceptable upper bound for the
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Fig. 4 Differentiation error Efd(k) as a function of the wavenumber k/kc for Reλ =
2500 and for kc = 32, at t∗ = 8. Approximate differentiations of order 2, 6, 10 and 14.
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Fig. 5 Detailed scale contribution |ζfd(k, k′)| to the differentiation errors Efd(k) as
a function of the wavenumber k/kc for Reλ = 2500 and kc = 32, and for various
reference wavenumbers k, at t∗ = 8. Approximate differentiations of order 2, 6, 10
and 14. , |ζfd(k, k′)|. Reference wavenumers: (a), k = 1; (b), k = 4. The
dotted line indicates where the reference wavenumber is located on the axis k′/kc

numerical errors. The error curves exhibit similar shapes with large amplitudes
close to the grid cut-off wavenumber, a plateau approximately centered on
k/kc = 10−1 and a decrease in k5 as the wavenumber tends to zero.

One may furthermore observe that increasing the order of accuracy of
the discretization tool reduces the numerical errors. The 2nd order scheme
indeed yields large differentiation errors, larger than the subgrid-scale energy
transfer for most of the wavenumbers supported by the mesh, whereas for
higher order schemes the differentiation errors are lower than the reference
amplitude |T>(k|kc)| is widened. Using a 14th order algorithms for instance,
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the numerical errors are negligible for all wavenumbers except those close to
the mesh cut-off wavenumber.

It should be noted that increasing the order of accuracy mainly acts on
LES accuracy at high wavenumbers. Figure 4 indeed shows that when the
formal order is increased the k5 slope as k → 0 and the plateau level are
weakly modified whereas the wavenumber range where differentiation errors
are large is severely narrowed. This trend is interesting since one could have
expected that the formal order is related to the accuracy at the larger scales.

The relationships between numerical errors and the properties of the ap-
proximate differentiation can be interpreted by studying the detailed scale
contribution to the numerical errors. The detailed scale contribution ζfd(k, k′)
to the differentiation error Efd(k) is plotted as a function of k′/kc in
Fig. 5(a), (b) for respectively k = 1 and k = 4. Results are evaluated at
t∗ = 8, for Reλ = 2500 and kc = 32, and algorithms of order 2, 6, 10 and 14
are considered. For k = 1 and for the 2nd order scheme, the detailed scale
contribution shows a maximum in the neighbourhood of k′ = k, corresponding
on the plot to k′/kc � 0.03. The contribution ζfd(k, k′) is then seen to slowly
decrease when k′ tends to the grid cut-off wavenumber kc. A large range of
wavenumbers therefore contributes to the error. When the formal order of the
differentiation algorithm is increased, a significant decrease of the contribu-
tion from the larger scales is observed. At k′/kc � 0.03, there is for instance
about six orders of magnitude between the contribution obtained with the
2nd and with the 6th order schemes. On the other hand, the contributions
from the scales close to the mesh cut-off wavenumber appear to be weakly
influenced by the order of accuracy. In the neighbourhood of k′ = kc, the am-
plitude of ζfd(k, k′) is indeed similar for all the algorithms. This dominant role
played by high wavenumbers in the differentiation errors could be explained
by the large difference between the exact and the approximate differentiations
close to the mesh cut-off wavenumber. Indeed, even though long range inter-
actions between the reference wavenumber k = 1 and the wavelengths k′ ∼ kc

close to the cut-off wavenumber are likely to involve few transfers of energy,
the inability of the algorithms to accurately resolve the smaller wavenumber
still produces significant numerical errors. It should be noted that accord-
ing to Fig. 5.(a), small-scale contributions dominate the numerical errors for
schemes with order equal or higher than 4.

The same conclusions hold for k = 4 in Fig. 5.(b). The contributions from
the larger scales (k′/kc ∼ 0.1) are seen to decrease with the order of accuracy
whereas ζfd(k, k′) exhibits non-negligible values in the vicinity of the mesh
cut-off wavenumber for all the schemes.

Order of Accuracy vs. Modified Wavenumber Optimization

Increasing the formal order of a discretization scheme is the simplest technique
to increase the accuracy of the numerical method. Larger stencil sizes must
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Fig. 6 Differentiation error Efd(k) as a function of the wavenumber k/kc for
Reλ = 2500 and for kc = 32, at t∗ = 8. , 10th standard finite differ-
ences; , 11-point optimized scheme; , 13-point optimized scheme;

◦ , magnitude of the subgrid scale contribution |T >(k|kc)|

however be used and the computational cost is increased. Scheme optimiza-
tion in the Fourier space [11] is an alternative technique allowing to increase
the resolution range of approximate derivatives while keeping constant the
number of points of the algorithm. Reducing the formal order indeed allows
to freely choose some coefficients of the scheme which can be determined by
optimizing the modified wavenumber in the spectral space. The accuracy at
low wavenumbers is lowered but higher wavenumbers, especially those close
to the grid cut-off, are better resolved. Considering the results of the inves-
tigation of the detailed scale contribution ζfd(k, k′) carried out in the former
section, the optimized schemes are of special interest since the EDQNM-LES
showed that most of the numerical errors are generated by the smallest scales
represented on the mesh.

The differentiation error Efd(k) is plotted in Fig. 6 as a function of k′/kc

for the 4th-order 11-point and 4th-order 13-point optimized finite differences
designed by Bogey & Bailly [7]. The results for the standard 10th order scheme
is also presented for comparison. The Reynolds number is Reλ = 2500 and
the mesh cut-off kc = 32. Compared to the 10th standard scheme, the 11-
point optimized algorithm provides lower numerical errors. It is worth noting
that due to its better accuracy at high wavenumbers, the 11-point optimized
scheme results in an error reduction for all the wavenumber range under con-
sideration, including the larger scales with k/kc < 10−2. In a similar manner,
the 4th-order 13-point optimized algorithm leads to low differentiation er-
rors over a large interval of wavenumbers. In particular, the poorly resolved
wavenumbers close to the mesh cut-off wavenumber lies over a small extent
0.7 < k/kc < 1.
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Fig. 7 Evolved kinetic energy spectra at t∗ = 16 provided by the EDQNM-LES cal-
culation for Reλ = 2500 and kc = 32, for 10th order approximate derivatives, with
spectral explicit filtering at kf = kc/2 and with spectral eddy-viscosity. ,
10th order finite differences; , EDQNM-DNS reference solution. (The dot-
ted line stands for the LES cut-off wavenumber.)

Explicit Filtering

t has been previously shown that practical discretization tools thus introduce
numerical errors over a wavenumber range depending on the order of accu-
racy. Even though only few wavenumbers are not calculated with accuracy,
it may be appropriate to remove these poorly resolved scales. The energy re-
distribution by the triadic interactions within the resolved scales can indeed
lead to a contamination of the full spectrum by numerical errors.

Low-pass filtering with a cut-off wavenumber kf smaller than the one of
the grid (kc) can reduce numerical errors [5]. The use of explicit filtering is
now illustrated using spectral filters with a cut-off wavenumber chosen so that
it remains smaller than the accuracy limit ka of the differentiation algorithm.
In the framework of the EDQNM-LES model, spectral filtering is equivalent
to setting the kinetic energy spectrum to zero for k > kf , at each time step.
Note that in this case the cut-off wavenumber in the spectral eddy-viscosity
model of Chollet [10] is equal to the filter cut-off wavenumber.

The improvement in accuracy using filtering is illustrated by performing an
EDQNM-LES calculation for the 10th order finite differences at Reλ = 2500,
with the spectral eddy viscosity model and a filter-width-to-grid-size ratio so
that kc/kf = 2. The waves with fewer than 4 points per wavelength are then
removed from the calculation. Figure 7 shows the kinetic energy spectrum
obtained at t∗ = 16 with the EDQNM-LES model and the reference spectrum
of the EDQNM-DNS. A good agreement is found over the whole range of
resolved wavenumbers. The enhancement of the resolution is especially visible
when one compares this spectrum to the one of Fig. 3 which has been obtained
without filtering and shows larger discrepancies.
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4 Conclusion

The influence on numerical errors of the formal order of the discretization
methods in LES has been studied. To quantify the numerical errors, an
EDQNM-LES model has been developed in order to evaluate the time evolu-
tion of the kinetic energy spectrum obtained by an LES based on approximate
differentiation algorithms with given orders. The comparison to the reference
spectrum provided by a classical fully-resolved EDQNM approach (EDQNM-
DNS) has allowed to define and to calculate the differentiation and the aliasing
errors.

The results show that the aliasing errors are negligible. A study of the
detailed scale contribution to the differentiation errors furthermore indicates
that the interactions between scales in the neighbourhood of the mesh cut-
off wavenumber are responsible for the main part of the numerical errors,
even at low wavenumbers. This trend is confirmed by considering the 11-
and 13-point optimized finite differences. Compared to the standard schemes,
the optimized algorithms better resolve short wavelengths and a reduction of
the differentiation errors is observed for all wavenumbers. Finally using the
EDQNM-LES method, an improvement in accuracy is found to be obtained
using explicit filtering.
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Abstract. The present paper investigates the effect of grid irregularity on the re-
sults of large eddy simulations in turbulent channel flow at Re = 180. Having the
error components involved in LES, the grid irregularity effect on the shortcoming of
the subgrid scale models and the error of numerical approximation is also assessed.
A dynamic version of the WALE model for variable density flows and the varia-
tional multi-scale type model based on the dynamic WALE instead of the classical
Smagorinsky are implemented. One regular grid and three different disturbed grids
are considered. The dynamic WALE model and its VMS version are assessed and
compared to the DNS data and to the results obtained from the dynamic Smagorisky
model for the three grids. Comparison has shown that the models improve the qual-
ity of LES results. It was also noticed that these models, as compared with the
dynamic Smagorinsky model, are less affected by grid distortion.

Keywords: Large-eddy simulation, Quality, Dynamic WALE model, Grid
irregularity

1 Introduction

With the increase of computing power, the application of LES to industrial
type test cases becomes more feasible. However, this type of less academic
cases usually require the use of less regular grids, such as unstructured grids.
This poses new challenges concerning the quality and the behavior of SGS
models on irregular grids as well as possible effects of commutation errors. In
the present paper, we will focus on the first aspect.

A complication is that the LES flow field is contaminated by both the
inaccuracies resulting from the numerical approximation of the derivatives on
the grid (discretization error) and the shortcoming of the model (modeling
error). In the present paper, we want to compare LES results for the same
test case (channel flow) on a well-behaved Cartesian grid and three different
irregular grids, obtained from the Cartesian one by arbitrary displacements
of the nodal points. Since both discretization and modeling errors will be

J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, 155
c© Springer Science+Business Media B.V. 2008



156 G. Ghorbaniasl, C. Lacor

different on the grids, it is essential that both types of errors can be separated
if the effect of the grid on the modeling error is to be studied. In the literature,
several papers can be found dealing with the separation of errors [1], [2], [3] and
[4]. In the present paper, the approach of Vreman et al. [4] is followed, where
the separation of discretization and modeling error is done by comparing LES
simulations with the same filter but different grid resolutions.

Different SGS models are considered in this study:

1. the dynamic Smagorinsky model (DSM) [5], [6]
2. the wall-adapted local eddy-viscosity (WALE) model, Ducros et al. [7]
3. the variational multi-scale model (VMS), Hughes et al. [8]

In the present paper, a dynamic version of the WALE model, valid for
variable density flows, is proposed and tested. The better behaviour of the
dynamic WALE model, as compared with the dynamic Smagorinsky, also
led us to formulate and test a VMS type model based on the dynamic WALE
instead of the standard Smagorinsky. It will be shown that these modifications
improve the results for the regular and irregular grids.

The main purpose of this work is to study the grid distortion effect on
the quality of LES simulations with the fore-mentioned SGS models. It will
be shown that distortion of grids has high influence on the results of the dy-
namic Smagorinsky model, whereas this effect decreases significantly when the
dynamic WALE or VMS of dynamic WALE are used for modeling approach.

This paper is organized as follows: in Section 2 the anisotropic shear stress
is briefly discussed and the investigated models are detailed, Section 3 is de-
voted to a brief summary of approach to separation of errors, test case descrip-
tion and a posteriori tests is presented in Section 4, and finally, in Section 5
conclusions are drawn.

2 The SGS Stress Tensor and Investigated Models

In the case of variable density, the filtered Navier–Stokes equations may be
written as

∂ρ̄

∂t
+

∂ρ̄ũi

∂xi
= 0

∂ρ̄ũi

∂t
+

∂ρ̄ũiũj

∂xj
= −∂σ̄ij

∂xj
−

∂τ sgs
ij

∂xj
(1)

where the Favre filtered field is defined as ρu/ρ̄ and the term τsgs
ij is the

subgrid-scale shear stress

τ sgs
ij = ρ̄(ũiuj − ũiũj) (2)

This term cannot be determined using only the resolved flow field ũi, and
thus it requires modeling. According to equation (2), the subgrid stress is not
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strictly deviatoric and one can split it up into a deviatoric and an isotropic
tensors as follows,

τsgs
ij = τD

ij + τ isoδij (3)

where, τ iso = 1
3τ

sgs
kk , and

τD
ij = τ sgs

ij −
1
3
τsgs
kk δij (4)

The subgrid-scale stress tensor can be modeled at different levels of complex-
ity. The eddy-viscosity concept is widely used in LES. We shall define in the
next section the models based on the eddy-viscosity concept that we have
used in the present paper.

2.1 Wall-Adapted Local Eddy-Viscosity (WALE) Model

The basic assumption of all eddy viscosity models is that the unknown subgrid
scale stress tensor is proportional to the filtered large scale strain rate tensor.
The deviatoric subgrid-stress tensor is approximated by

τD
ij ≈ −2νtρ̄(S̃ij −

1
3
S̃kkδij) = −2νtρ̄S̃

D
ij (5)

where νt, is the eddy viscosity and S̃ij , is the resolved shear stress tensor.
Now the determination of the eddy-viscosity νt is required. The WALE model
proposed by Ducros et al. [7] is one of the approaches to the eddy-viscosity
determination. This approach is specifically designed to return the correct
wall-asymptotic y+3-variation of the SGS viscosity (Hinze, 1975) [9]. Although
the model has originally been developed for incompressible flows, it can also
be used for variable density flows. Following this model, we can have the eddy
viscosity as

νt = (CwΔ)2|S̃w| (6)

where

|S̃w| =
(S̃d

ijS̃
d
ij)

3/2

(S̃ijS̃ij)5/2 + (S̃d
ijS̃

d
ij)5/4

(7)

and
S̃d

ij =
1
2
(g̃2

ij + g̃2
ji)−

1
3
g̃2

kkδij (8)

with
g̃2

ij =
∂ũi

∂xk

∂ũk

∂xj
(9)

The term Cw, is the model parameter, which has to be fixed a priori. In order
to make this model applicable to real industrial flows, below we will develop
the dynamic version of this model for flows with variable density. Being a
dynamic model, it will have the great advantage that the coefficient Cw, is
not arbitrary chosen (or optimized), but it is computed.
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2.2 Dynamic WALE Model

The dynamic procedure was proposed by Germano et al. [10] to allow for
the model parameter to vary spatially and temporally by employing an addi-
tional filter (test filter) with a filter width Δ̂, larger than the grid spacing, Δ.
Applying the test filter to the equations of motion, one can get a subtest stress
tensor,

Tij = ˆ̄ρ( ˘̃uiuj − ˘̃ui
˘̃uj) (10)

where the symbol ·̆, is defined as ˘̃u = ̂̄ρũ/ ˆ̄ρ. The deviatoric part of the subtest
stress can be modeled by

TD
ij = Tij −

1
3
Tkkδij ≈ −2(CwΔ̂)2 ˆ̄ρ| ˘̃Sw|( ˘̃Sij −

1
3

˘̃Skkδij)

= −2(CwΔ̂)2 ˆ̄ρ| ˘̃Sw| ˘̃SD
ij (11)

The Favre filtered strain rate at the test scale should be computed as follows,

˘̃Sij =
1
2
(
∂(̂̄ρũi/ ˆ̄ρ)

∂xj
+

∂(̂̄ρũj/ ˆ̄ρ)
∂xi

) (12)

One can also determine the Favre filtered tensor ˘̃g2
ij , at the test scale as

˘̃g2
ij =

∂(̂̄ρũi/ ˆ̄ρ)
∂xk

∂(̂̄ρũk/ ˆ̄ρ)
∂xj

(13)

to obtain the term | ˘̃Sw| by

| ˘̃Sw| =
( ˘̃Sd

ij
˘̃Sd
ij)

3/2

( ˘̃Sij
˘̃Sij)5/2 + ( ˘̃Sd

ij
˘̃Sd
ij)5/4

(14)

where
˘̃Sd
ij =

1
2
(˘̃g2

ij + ˘̃g2
ji)−

1
3
˘̃g2
kkδij (15)

The subgrid stress τsgs
ij , and the subtest stress Tij , can be related to each other

through the resolved turbulent stress and Germano identity. Using equations
(2) and (10), the resolved turbulent stress, the Leonard stress, which repre-
sents the energy scales between the grid filter and the test filter, is defined
as

Lij = Tij − τ̂ sgs
ij = ̂̄ρũiũj −

̂̄ρũi
̂̄ρũj

ˆ̄ρ
(16)

The Leonard stress contains only the resolved scales and it can thus be eval-
uated from the resolved flow field. Using equations (5), (6) and (11) for the
Germano identity, we have
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LD
ij = TD

ij − τ̂D
ij ≈ −2(CwΔ̂)2 ˆ̄ρ| ˘̃Sw| ˘̃SD

ij + 2(CwΔ)2 ̂ρ̄|S̃w|S̃D
ij

= 2C2
wM

D
ij (17)

where
MD

ij = −(Δ̂/Δ)2 ˆ̄ρ| ˘̃Sw| ˘̃SD
ij + ̂ρ̄|S̃w|S̃D

ij (18)

To obtain the expression for MD
ij , we have neglected the variation of C2

w, on
the test filter width Δ̂. Based on Lilly’s work [6], the error square is given by

Q = (LD
ij − 2C2

wM
D
ij )2 (19)

This equation represents a system of equations for the single unknown C2
w,

minimizing the error square, ∂Q/∂C2
w = 0, and the fact that, LD

ijM
D
ij =

LijM
D
ij , result in

C2
w =

1
2
< LijM

D
ij >

< MD
klM

D
kl >

(20)

where < · > stands for averaging over the homogenous directions.

2.3 The Variational Multi-Scale Model

The variational multi-scale model (VMS) developed by Hughes et al. [8] cor-
responds to limiting the Smagorinsky model to the small scales. The main
justification behind this model is that most of the shortcomings associated
with a Smagorinsky based model are due to their inability to differentiate
between small and large scales. In the multi-scale formulation the solution is
decomposed into large scale and small scale components,

u = ul + u′ (21)

In the physical space the following approximation is done for the small scale,

u′ ≈ ũs = ũ− ˆ̃u (22)

where ũ denotes the resolved scales and ˆ̃u represents the test filtered field.
Another way to obtain the small scale is using the deconvolution technique.
Based on this technique and using up to second order accuracy, one can have

ũs ≈ −Δ2

24
∇2ũ (23)

The modeling is confined to the small scales. We formulate and test the dy-
namic WALE based VMS (all-small) model instead of the standard Smagorin-
sky. We approximate the subgrid stress as

τsgs
ij ≈ −2[(CwΔ)2ρ̄|S̃w|S̃D

ij ]s (24)

and the subtest stress as

Tij ≈ −2[(CwΔ̂)ˆ̄ρ| ˘̃Sw| ˘̃SD
ij ]s (25)

The superscript s indicates that all the variables inside the square brackets
are determined based on the small scales instead of the large scales.
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3 Approach to Separation of Errors

The differences between LES and DNS results are the sum of the filtering
effect, the modeling error effect caused by the SGS models and the discretiza-
tion error effect from inaccuracies of the numerical method. Based on Vreman
et al. [4] approach, to separate error components, we need to perform the
so-called fine-grid LES, in which the filter width is kept constant while the
resolution is increased. The discretization error is thus given by

ed =< ũ >LES − < ũ >finegridLES (26)

The difference between the fine grid LES and the filtered DNS gives the effect
of modeling error,

em =< ũ >finegridLES − < u >filteredDNS (27)

The filtering error can be obtained with

ef =< u >filteredDNS − < u >DNS (28)

In equations (26), (27) and (28), ũ denotes the LES variable and u refers to the
DNS data. Obviously, the filtering error does not depend on the SGS models,
and it has the same contribution to the total error when different SGS models
are used. However, to evaluate SGS models one can avoid using the filtered
DNS data by combining the filtering effect with the modeling contribution as
follows

emf = em + ef =< ũ >finegridLES − < u >DNS (29)

In the remainder of the article we will refer to this error as a modeling-filtering
error, where the modeling error is summed with the filtering error.

4 A Posteriori Tests and Test Case

As already mentioned the turbulent channel flow is chosen as test case. Cur-
rent results are at a Reynolds number of 180 (based on the friction velocity)
but results for higher Reynolds are underway. For the channel considered,
Lx = 4π, Ly = 2 and Lz = 4π/3. Four grids are employed in the calcula-
tions: one is a well-behaved Cartesian grid (grid 1) and the three others are
irregular grids obtained from grid 1 through distortion in the homogeneous
directions. The disturbed grids are obtained by adding a random displacement
in the nodes of the regular grid. Based on the size of this displacement, three
distorted grids (grid 2, grid 3 and grid 4) are obtained, where grid 4 is the
most distorted, grid 2 is the least and grid 3 (cf. Figure 1) is intermediate.
All LES use a computational grid of 33 × 33 × 33 points, which corresponds
to one-quarter of the DNS resolution in each spatial direction. For spatial
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Y X

Z

Fig. 1 Schematic of grid 3 is shown

discretization, the second-order central finite volume scheme and for the tem-
poral discretization low storage four-stage second order RK scheme was used.
To perform the fine-grid LES three finer grids of 65×65×65 points associated
with the three coarse grids are considered.

It is interesting to note that Meyers et al. [11] have performed grid sensi-
tivity study in their channel-flow DNS at coarse resolutions calculations and
suggested the optimal requirement for resolved DNS. The present grid resolu-
tion may fall outside these resolution requirements, however, the main purpose
of this article was to compare and analyze the performance of different SGS
models and since the mesh is the same for all SGS models, the comparative
study is valid. First, we investigate the dynamic Smagorinsky, the dynamic
WALE and the dynamic WALE based VMS models, when they are applied
for the regular grid case. Then, those models will be assessed for the three
irregular grids.

In order to have a fair comparison, we should compare LES results with
filtered DNS data. Since filtered DNS are in general not available, to evaluate
the performance of the models, LES results are compared with unfiltered DNS
data. Such a comparison is qualitative at best for the assessment of the results.

4.1 Comparison of the Results for the Regular Grid

In Fig. 2 (Left), we compare results for the mean streamwise velocity. As can
be clearly seen, VMS version of the dynamic WALE model (VDW) is the most
accurate model. The dynamic Smagorinsky model is the least accurate. The
dynamic WALE predicts the results slightly less accurate than its VMS ver-
sion. As shown in Fig. 2 (Right), the effect of modeling-filtering is smaller than
effect of discretization error for all the models. Both the modeling-filtering
and numerical errors of the VDW model are the smallest whereas those of the
dynamic Smagorinsky are the biggest and of the dynamic WALE are inter-
mediate.

Rms values of streamwise velocity fluctuations is presented in Fig. 3 (Left).
Throughout most of the channel, the dynamic WALE and its VMS version
model are on top of each other. Both the models overshoot the peak DNS
value somewhat more than the dynamic Smagorinsky model but predict the
results more accurate than the dynamic Smagorinsky model elsewhere. On
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Fig. 2 (Left) Mean-velocity profile compared with the DNS data, (Right) Related
error components
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Fig. 3 (Left) Rms values of streamwise velocity fluctuations compared with DNS
data, (Right) The related error components
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Fig. 4 (Left) Rms values of spanwise velocity fluctuations, (Right) The x, y-
component of Reynolds stress

the right hand side of this figure, the related error components are given.
As can been seen, the modeling-filtering error of the VDW is slightly lower
than the dynamic WALE one, whereas the discretization error of the VDW is
somewhat higher than that of the dynamic WALE. This error for the dynamic
Smagorinsky model is the largest. The discretization error of the dynamic
Smagorinsky is the smallest at the peak and largest in the middle of the
channel.
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Fig. 5 (Left) L2-norms of streamwise mean-velocity, (Right) L2-norms of the related
error components

Results for rms values of spanwise velocity fluctuations are presented in
Fig. 4 (Left). The Smagorisky model produces inaccurate spanwise turbulent
intensity profile. The VDW model is again the best. Likewise, the dynamic
WALE model predicts the spanwise intensity accurately, slightly less accurate
than the VDW. Results of both the dynamic WALE and the VDW models are
identical to the DNS data near the wall. The same conclusion was observed
for rms values of wall-normal velocity fluctuations.

The x, y-component of Reynolds stress profile is illustrated in Fig. 4
(Right). The dynamic WALE and the VDW models predict the results better
than does the dynamic Smagorinsky model. In order to have a fair comparison,
the LES modeled contribution was also taken into account in the simulations.
Although inclusion of the modeled part improved the dynamic Smagorinsky
results considerably, the accuracy of this model was still the least.

Overall, for the regular grid our results indicate that the all-small model is
slightly better than the dynamic WALE model and considerably more accu-
rate than the dynamic Smagorinsky model throughout most of the channel for
the streamwise mean velocity, the rms wall-normal and spanwise velocity fluc-
tuations and the x,y-component Reynolds stress. The dynamic Smagorinsky
model captures the peak of the rms streamwise velocity fluctuations somewhat
better than the two others. However, the most accurate models overall is the
VDW model. Likewise, the modeling-filtering error effects of the VDW and
the dynamic WALE models are significantly lower than one of the dynamic
Smagorinsky model.

4.2 Results on the Irregular Grids

In this section, the total error in the LES simulation with the three SGS
models applied to the irregular grids is studied.

In order to investigate the SGS models performance, L2-norms of the LES
simulations results are considered. First, L2-norms of streamwise mean veloc-
ity from the SGS models are plotted in Fig. 5 (Left) for the grids. Herein we
notice that the grid irregularity effect on the Smagorinsky model is signifi-
cantly larger than on the VDW and on the dynamic WALE models. As can
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Fig. 8 Rms values of streamwise velocity fluctuations and the associated error
components are shown for grid 3

be seen, for all the models the more grid distortion gives the more total error
(e.g. see Fig. 6). The VDW is still the most accurate, the dynamic WALE is
intermediate and the dynamic Smagorinsky is the least for the different irreg-
ular grids. The L2-norms of the error components are given in Fig. 5 (Right).
The modeling-filtering error effect of the VDW is the smallest in all the grids.
This component for the dynamic Smagorinsky is the largest.

L2-norms of rms values of streamwise velocity fluctuations are plotted
in Fig. 7 (Left) for the different grids. On the right hand side of this figure
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L2-norms of the related error components are illustrated for the three irregular
grids. As can be seen, the total error of the dynamic Smagorinsky model
increases with the grid irregularity more than those of the dynamic WALE
and the VDW models. We can see that for grid 2 and grid 3 the dynamic
WALE is the most accurate. For grid 4 the VDW is the most accurate model.
For all the irregular grids the total error of the dynamic Smagorinsky is the
largest. It should be mentioned that the dynamic Smagorinsky overshoots the
peak higher than do the dynamic WALE and the VDW when grid 3 and grid
4 are used (e.g. see Fig. 8). The modeling-filtering error effect for all the SGS
models vary uniformly from grid 1 to grid 3, but the discretization error effect
of the dynamic Smagorinsky model from grid 2 to grid 3 has rapidly increased.

L2-norms of the spanwise velocity fluctuations and the x, y-component of
Reynolds stress are shown in Fig. 9. The all-small is the most accurate model
for grid 2. The dynamic WALE is the most accurate model for grid 3. The
dynamic Smagrinsky model is still the least accurate for those irregular grids.

5 Conclusion

The dynamic version of the WALE model and the variational multi-scale
model based on the dynamic WALE were developed and implemented. The
assessment of these models in addition to the dynamic Smagorinsky model
were carried out for the turbulent channel flow at Re=180. One regular grid
and three different irregular grids were considered for the investigation. Sig-
nificant improvements in the profiles of mean velocity, rms values of turbulent
intensities and the x,y-component of Reynolds stress, as compared to the dy-
namic Smagorinsky, are obtained for all the grids when using the dynamic
WALE model and its VMS version. Overall, we conclude that the dynamic
WALE and its VMS version are accurate models, in particular, when the ir-
regular grids are used in the LES simulations. We have also separated the
modeling-filtering error effect and the discretization error effect of the mod-
els for the grids. We have shown that for each grid and for all the models
the discretization error effect is larger than the modeling-filtering error effect.
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This behavior can be partially related to the fact that Reynolds number is
rather low and the filter width equivalent to grid spacing of the coarse mesh,
gives small subgrid contributions and less accurate approximations of deriva-
tives. This is important future research needed to further investigation, in
particular, for higher Reynolds number. Finally, it has been shown that the
modeling-filtering error effects of the dynamic WALE and the VDW models
are lower than that of the dynamic Smagorinsky model for all the grids.
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Anisotropic Grid Refinement Study for LES
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Abstract. In this paper an anisotropic grid refinement study is proposed for use in
Large-Eddy Simulation. The aim of the method is to compare the effect of different
grid refinements. These refinements can be selected systematically in order to fit the
grid to the anisotropy of the turbulence. Furthermore it is proposed that the results
be compared using multiple objectives, i.e. to separate the effects on the different
components of the Reynolds stress tensor. It was attempted to apply the Index of
Resolution Quality for quantifying the various refinements. The method was applied
to a spatially developing axisymmetric shear layer (round jet). Reynolds stresses,
momentum thickness and vortices were plotted for this purpose. The results indicate
that grid refinement in different directions has an effect differing both in manner
and magnitude. This differing manner is highlighted in the various behaviours of
the Reynolds stress components. The index of resolution quality was found to be
misleading, since it can underestimate the relative importance of the grid refinement
effects.

Keywords: Directional grid refinement, Vortex, Large-eddy simulation

1 Introduction

In the Large-Eddy Simulation (LES) approach a spatial filtering is applied on
the turbulent flow and only the scales passed trough the filter are simulated
while the smaller ones need to be modelled. Besides the advantage of LES
that it resolves the large scales – which are difficult to model – still an impor-
tant and extensive research field focuses on developing models for the filtered
(Sub-Grid) scales. Another important research field in LES is defining guide-
lines for its proper application, i.e. defining the quality of an existing LES
result. This paper contributes to this issue. In practical numerical simulations
the filter width can be expressed in terms of the numerical mesh size h. In
traditional LES the filter width is the same as the typical mesh size, resulting
in large amount of numerical error when resolving the filtered flowfield [5].
The numerical error for LES is defined in [11] as the difference between the
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perfect solution of the modelled filtered equation and the one computed using
the practical numerical method.

1.1 Need for an Anisotropic Grid

Large scale turbulent structures are highly anisotropic, therefore an anisotropic
grid would be optimal for its resolution. Block structured grids can define such
a structure, where the anisotropy can be controlled by the cell numbers of the
independent edges of the blocks. An arbitrary number of N groups can be
selected from these independent edges to control the anisotropy.

1.2 Quality Assessment Criteria for LES

By definition an ideal LES (with a perfect SGS model and without numerical
error) should be able to reproduce any smooth (which are not affected by
the filtering) quantities perfectly. Most of the turbulent fluctuating quantities
are however affected by the filtering and consequently their resolved values
(φres) differs from the real one. Thus for fluctuating quantities (e.g. rms), the
following approximation was proposed by [2]: φtot = φres + φSGS + φnum,
where φtot, φSGS and φnum are the total value, the SGS model contribution
and the numerical error of φ respectively. If φtot is available, the ratio of
the resolved value to the total value of φ can be expressed. This value is
denoted as LES IQφ = φres/φtot in [2]. An LES is defined as good when
the smooth quantities are predicted correctly and the amount of the modelled
quantities are known. This requires that the large scale motions (typically
vortices) – which are believed to produce the anisotropic turbulence – be
accurately resolved. [10] argues that if 80% of the turbulent kinetic energy
(TKE) is resolved, the LES will be good. This rule can be reformulated for
the difference between the total and the resolved value, which needs to be
less than 20%. [2] pointed out that even negative values can occur for this
difference and therefore a new rule can be formulated: LES IQφ needs to be
in the 1±0.2 range. This can be extended to every component of the Reynolds
stress tensor, using LES IQφ to qualify the simulations.

1.3 Estimating the Total Value of φ

In this paper two methods are used to estimate φtot. These methods use ex-
trapolation techniques from the results of systematically modified simulations.
They were developed for the case when the mesh resolution can be described
with a single number (N = 1). It is proposed in [8] that the difference between
the total value of a quantity and its actual computed (resolved) value can be
approximated:

φtot − φa,b
p = cn (bh)n

︸ ︷︷ ︸
φnum

+ acm (bh)m

︸ ︷︷ ︸
φSGS

(1)
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Here φa,b
p is the resolved value of φ for simulation p, with parameters a and b

denoting the model variation and the grid refinement parameters respectively.
cn and cm are constants, which are to be determined. The grid refinement
parameter is global, meaning that the grid is refined by b in every spatial
direction (all the N edge groups are refined in the same manner). h is the
local grid spacing of the base simulation, while n and m are the order of
the numerical error, and the subgrid scale model contribution respectively.
If n = m = 2 is assumed, then only two simulations are needed (p = 1, 2)
to obtain φtot. Changing only b is proposed by [2], thus the parameters of
the required simulations are [a, b]p=1 = [1, 1] and [a, b]p=2 = [1, β], where β
is the actual refinement factor. If n �= m, then three simulations are needed
(p = 1, 2, 3) in order to obtain φtot. There are several possible parameter
combinations. If both a and b are varied, then the required simulations are:
[a, b]p=1 = [1, 1], [a, b]p=2 = [α, β], [a, b]p=3 = [1, β], where α is the actual
model variation parameter. This combination was proposed by [8], although
it was not used to extrapolate the value of φ, but to estimate the simulation
uncertainty.

1.4 Refinement Assessment for Block Structured Grids

Since the final goal of varying the grid anisotropy is to find an optimal cell
size – which fits to the characteristics of the flowfield – a method needs to
be defined in order to quantitatively compare the results of the directionally
refined simulations. It was attempted to use the index of resolution method
described in Sect. 1.3 to quantify the impact of each grid refinement. Since
a directional refinement does not converge to the infinite resolution i.e. the
total value of φ can only be computed by using the original method which
applies a global grid refinement (all the N parameters are varied together),
it is proposed that a LES IQφ be computed by dividing the result on the
directionally refined grid by the total value computed using global refinement.
This LES IQφ – if the methods assumptions are fulfilled – enables us to decide
if the effect of the actual refinement is significant.

2 Computational Details

In the present paper the previously described methodology is demonstrated
on the near field of a round free jet flow (axisymmetric shear layer).

2.1 Investigated Flow

The flow parameters correspond to the measurements of [3]. The flow was
approximated as incompressible and can be characterised by the discharge
Reynolds number of Re = U0D/ν = 106000, where U0 is the maximum veloc-
ity and D is the inlet diameter.
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2.2 Numerical Parameters

The computation was carried out with the commercial code Fluent 6.3 [7],
which uses a cell-centred finite-volume method with collocated variable ar-
rangement. For the simulation, the pressure based solver was applied solving
the governing equations sequentially and coupling them using the FSM (Frac-
tional Step Method) in a non-iterative manner [7]. The time is advanced using
Gear’s two step second-order implicit method. Approximately a second order
accuracy is reached by using the Bounded Central Differencing scheme [7] for
spatial discretisation of the convective terms. The second order scheme was
used for the interpolation of the pressure. The spatial derivatives were cell
based evaluated.

The simulations used the Smagorinsky model with Cs,ref = 0.1 (unless
otherwise indicated), νt = (Cs,refΔ)2

√
2SijSij , where Sij is the resolved

rate of strain tensor, Δ = 3
√
V and V is the cell volume.

The T = 115.2U0/D long statistical sampling was initiated at approxi-
mately Ts = 20U0/D (the approximate end of the temporal laminar-turbulent
transition). Constant time-steps were selected for each mesh to have CFL < 1.

2.3 Computational Domain and Grid

The computational domain consisting of a cylinder with a streamwise length
of 6D and diameter of 5.2D. The block structure of the computational grid
can be seen in Fig. 1, with one quarter of the mesh, which is perpendicular to
the mean flow is depicted on the right. The cells of the grid are concentrated
at r = 0.5D, where r is the radial coordinate. This quadrilateral mesh is ex-
truded in the x (streamwise) direction with a non uniform cell distribution.
The cells are also concentrated at the inflow boundary. The block structure of
the mesh implies that the cell number can be expressed with four variables Ψ ,
R1, R2 and X. The variables Ψ and X directly determine the number of cells
in the azimuthal (ψ) and streamwise (x) direction respectively. The number
of cells in the radial (r) direction is determined by the R1, R2 and Ψ vari-
ables, showing that the radial cell number cannot be changed independently
from the azimuthal cell number. The block edges are meshed for the refined
domains as given in Table 1. The grid notation in the first row of Table 1
(e.g. b1ψ2) shows the refined grid name (b1), the refinement direction (ψ) and
the refinement factor (β = 2). The smallest cell of the domain is situated at
the inflow boundary in the shear layer and can be characterized by its radial
δr, circumferential δψ and axial δx extent. For the b1 base mesh these sizes
are δr = 0.015D, δψ

∼= 3δr and δx
∼= 1.67δr. According to the grid refinement

parameter β, the smallest cell size for the other grids can be computed from
these sizes. The size of the cells increases along the positive x direction up to
x = 4D, after which it decreases and again concentrates at the outflow bound-
ary. In the outflow plane (x = 6D) the cell distribution of the mesh differs
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Fig. 1 Block structure of the grid and cross section for the b1 mesh. Left: z = 0
plane. Right: x = 0 plane. The block resolutions is indicated by Ψ , R1, R2 and X

Table 1 Edge cell numbers of the grids, as defined in Fig. 1. The total number of
cells is: XΨ (Ψ + 4 (R1 + R2))

b1 b1ψ0.5 b1r0.5 b1x2 b1ψ2 b1r2 b1all
√

2 b2 = b1x4 b2ψ2 b2r2 b2all
√

2

Ψ 17 9 17 17 34 17 24 17 34 17 24
R1 9 9 5 9 9 18 13 9 9 18 13
R2 23 23 12 23 23 46 33 23 23 46 33
X 69 69 69 138 69 69 97 276 276 276 390

from the one shown in Fig. 1 right. At this position the cells are uniformly
distributed along the edge R1.

2.4 Boundary Conditions

A velocity inlet boundary condition was prescribed for the region x = 0, r <
0.5D. A tangent hyperbolic mean velocity profile (ū) was imposed according
to [1]. The initial momentum thickness of the shear layer was defined as Θ0 =
0.005D. The inflow turbulence was generated by the vortex method [9], with
the input parameters of TKE and its dissipation rate. The turbulent kinetic
energy profile was calculated from the measurement data of [3] (TKE =
3/2urms). The dissipation rate was k3/2/l′ where l′ was estimated as l′ =
min(0.09δ99, l) and δ99 was the 99% boundary layer thickness. The wall shear
stress was computed from the mean velocity profile and l was determined by
the van Driest formula. The number of the vortices were 190. The far-field
condition was prescribed as constant using the pressure outlet condition of
[4]. This prescribes a static pressure if the flow leaves the domain and a total
pressure if it enters the domain. Reverse flow is set to be perpendicular to the
boundary.
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3 Results

In the grid refinement study of a free jet starting with the base mesh b1 (see
Table 1), our goal was to examine the effect of radial, azimuthal and stream-
wise grid spacing on the results. These three grid parameters were believed to
affect the outcome of the LES. The refinement in azimuthal direction was done
by changing the cell number parameter Ψ . The refinement in the streamwise
direction was accomplished by changing the cell number X. Because the block
structure of the grid does not allow a purely radial refinement in the whole
domain, radial grid refinement was accomplished by changing the R1 and R2

parameters simultaneously. The cell distribution properties remain unchanged
along the edges in the refinement procedure. The results are discussed in terms
of turbulent kinetic energy (k), Reynolds-stresses u′u′, v′v′, w′w′ u′v′ (u′, v′,
w′ are fluctuation velocity components in the cylindrical coordinate system)
and momentum thickness of the shear layer (θm). The LES IQφ value was
computed for TKE and the Reynolds stresses. The simulation data was az-
imuthally averaged at r = 0.5D in the shear layer of the jet. The discussion
is limited to this location.

3.1 Baseline Grid Simulation Study

In the present study the b1 mesh was refined with a factor of β = 2 in all
three direction x, ψ, r (simulations: b1x2, b1ψ2, b1r2). The total value was
estimated using β =

√
2 in each direction (b1all

√
2), corresponding to a cell

number increase by a factor of 2
√

2, which was believed to be adequate for
the extrapolation. The results can be seen in Fig. 2, and the LES IQφ values
in Fig. 3.

In terms of the k values, only the globally (b1all
√

2) and the streamwise
(b1x2) refined grids have changed the results significantly. These results sug-
gest that only refinement in the streamwise direction has significant effect.
Considering the normal components of the Reynolds-stresses, it can be seen
that the k value is increased because of the v′v′ and w′w′ stresses, while
the streamwise fluctuation u′u′ has not changed. The dynamically important
shear stress u′v′ shows that the cell doubling in the streamwise direction
has significant impact, but the global refinement only has a small effect and
other refinements have not changed the results. The momentum thickness of
the shear layer also shows that the streamwise refinement has changed the
results. Additionally, the azimuthally refined grids also have some impact
on θm.

Since the azimuthal and radial grid refinement does not have significant
impact on the results, it was investigated to see what would be the impact
of a grid coarsening in these directions. The grid resolution of b1 was halved
in the azimuthal and radial directions and the results of the simulations were
plotted in Fig. 2 along with the refined grid data. It became clear that both
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Fig. 2 TKE, Reynolds stress components and momentum thickness for the b1 and
its refined meshes

the azimuthally and radially coarsened grids had strong impact on the simu-
lation results. The laminar to turbulent transition (k increase) started further
downstream than it did on the b1 mesh. The momentum thickness of the shear
layer increased with radial coarsening and slightly decreased when coarsening
azimuthally.

In Fig. 3 the LES IQφ values can be seen. The total value of k was ex-
trapolated by the aforementioned methods of [2] and [8]. For the extrapolation
using the method of [8] (setting n = 2, m = 2/3) a simulation with a modified
SGS model parameter is required. The contribution of SGS model is halved
(α = 1/2), thus Cs = 1/

√
2Cs,ref model parameter was used. Differences
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Fig. 3 LES IQφ using Celik [2] and Klein [8] method

between the two extrapolation methods can be observed in the 0.4D < x < 2D
region. Considering the x > 2D part of the curves, all the refined grids run in
the range 1±0.2 with [2] and there was only a small overshoot for k using [8].
This shows that the b1 mesh and all the refined ones can be accepted as good
LES. However the LES IQφ of the Reynolds-stresses v′v′ and w′w′ indicates
that the streamwise refined grid result run out of the aforementioned range.

3.2 Streamwise Grid Refinement Study

Since the streamwise refinement had strong impact on the results, a study
on the streamwise refinement was carried out and presented in Fig. 4, using
β =

√
2, 2, 2

√
2, 4, 8. Turbulent kinetic energy and Reynolds stresses showed

oscillatory convergence behaviour. For clarity, the dependence on the stream-
wise grid spacing was extracted at x = 3.5D for k and θm. From the complete
streamwise study emerged that streamwise refinement has strong influences on
the normal and spanwise fluctuations, but the effect on streamwise fluctuation
and shear stress is not significant.
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Fig. 4 TKE, Reynolds stress components and momentum thickness for the b1 and
its streamwise refined meshes

3.3 Refined Grid Simulation Study

A further investigation in directional grid refinement was carried out on the
b1x4 mesh, which was chosen as the b2 base mesh and refined in the same
manner as b1. The results are depicted in Fig. 5. All of the Reynolds stresses
were affected by the refinement in any direction. The strongest impact can be
seen on the v′v′ and w′w′ stresses. Radial and global grid refinement consid-
erably changed the point of laminar to turbulent transition. The momentum
thickness plot also supports this conclusion. Streamwise and azimuthal refine-
ment had effect on the momentum thickness but radial refinement had the
strongest impact. According to the LES IQk diagrams none of the meshes
satisfy the 1 ± 0.2 criteria except in small regions. However the b2r2 mesh
was closer to the given range. This refinement study indicates that further di-
rectional refinement investigations are needed using the b2r2 grid as the base
mesh.

3.4 Coherent Structure Behaviour

Since the main question in LES is the accurate resolution of the large (smooth)
scales, in this section we have compared the instantaneous flowfields in terms
of vortical structures. The vortices are defined as the regions of positive Q,
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Fig. 5 Reynolds stress components, momentum thickness and LES IQk using [2]
for the b2 and its refined meshes

which is the second invariant of the velocity gradient tensor [6]. Moreover,
positive Q regions show the rotation dominated part of the flow. In Fig. 6
the contours of Q can be seen in the half centre plane together with the
rendered isosurface of Q = 0.2U2

0 /D
2. These pictures are snapshots of the

typical flow structures at arbitrarily chosen simulation time. The formation
of Kelvin-Helmholz rollers can be seen at the inlet in the shear layer (where
∂k/∂x > 0) and downstream they are tearing and tilting (∂k/∂x < 0). It
can be seen that on the streamwise refined grid b1x2 and b2 the intensity
of the structures were increased while their size remained approximately the
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Fig. 6 Q contours in the y = 0, z < 0 half-plane and rendered Q = 0.2U2
0 /D2
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same. Smaller, but significant intensity growth could be observed in the case
of radially refined grid b1r2. In this case the rollers were smoother. These
observations support the averaged variable results, where only the streamwise
refinement had considerable effect. Considering only the refined grids of b2, the
b2ψ2 and b2r2 show significant changes in the vortex topology. For azimuthal
refinement (b2ψ2) the structures were more detailed compared to b2 or b2r2.
On the radially refined grid (b2r2) the rollers were created further upstream.
Both b2ψ2 and b2r2 meshes changed the averaged flow field results as well as
the coherent structure topology.

4 Conclusion

In this paper, a proposal for a method has been made to check the anisotropy
of computational cells used for LES. The grid refinement study was carried
out for a high Reynolds number axisymmetric shear layer simulation. Two
conclusions can be drawn from the experiences.

The first one concerns the applicability of the proposed method. It was
found that refining the grid in each direction separately highlighted the most
under-resolved edges of the grid structure. Therefore, for such grids, the global
refinement was inefficient for improving the LES. Taking into consideration
individually the components of the Reynolds stress tensor is interesting, since
the components are affected differently. An unreliability associated with us-
ing the Index of Resolution Quality method of [2] was found through this
investigation. One possible reason for this unreliability is that the anticipated
monotonic grid convergence was not present (as found in the streamwise re-
finement study, Sect. 3.2).
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The second conclusion is related to the shear layer simulation. The results
are believed to help in the understanding of the deficiencies of LES of such
flows. The grid resolution in the streamwise, azimuthal and radial directions
of the domain were systematically changed. The radial refinements were found
to differently influence the results depending on the actual resolution. For a
finer streamwise grid, the spatial transition was changed by the radial refine-
ment. The streamwise refinement has notable impact on only the radial and
azimuthal fluctuations. Though the grid refinement had a strong influence on
the turbulence characteristics, the investigated integral parameter of the flow
did not depend strongly on the grid resolution, which supports the general
concept that LES is able to reproduce the smooth averaged flow features even
at low resolution of TKE.

The vortex extraction method proved to be a useful tool for the explana-
tion of the physical changes caused by the grid refinement, although further
work is needed for its complete understanding.
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Abstract. The expectations fall into two categories. The first relates to the method
and how general it should be, how applicable to unstructured grids in complex three-
dimensional geometries and very high Reynolds numbers, even if the exercise uses a
structured grid in a two-dimensional flow at moderate Reynolds number. The view-
point is that there should be a known path from the research activity to the creation
of a machine or the prediction of weather. If not, the gap in this path takes on a high
priority and the work is labeled as preliminary. An example of such a litmus test
is whether the grid design requires knowledge of the direction of the skin friction.
The second category relates to the fidelity of the description of the turbulence which
can be assembled. As an example, the shear stress in a wall-bounded LES is calcu-
lated quite well as the sum of a viscous stress, a “modeled” Reynolds stress, and a
“resolved” Reynolds stress. However, the same has not been achieved for the other
Reynolds stresses, unless the grid is such that Quasi-Direct Numerical Simulation
is taking place. Higher-order quantities are even more troublesome. We also discuss
a remedy to Log-Layer Mismatch called “Energized Wall-Modeled LES” which is
most simple, cost-free, and compatible with grids that are useable in practice. The
added term provides visible extra activity, and improves all the Reynolds stresses in
addition to the mean velocity.

Keywords: Quality, Reliability, Versatility, Applicability, Large-eddy simulation

1 Introduction

The primary content of this paper is opinion over what are the best priorities
in Large-Eddy Simulation, and more generally in turbulence research. In this,
the first author’s affiliation with industry and brief activity in Atmospheric
Boundary Layers has an influence, but is not overwhelming. In simple terms,
two distinctions may be made. The first would oppose the “romantic” and
the “practical” visions of turbulence research. The second would oppose the
“supply” and the “demand” visions. These distinctions are not identical, but
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they are correlated in the community. The views advocated here probably
differ from those of many attendees at this workshop, but debate is useful.
Some of the comments merely extend those made in 1997 when introducing
DES [1], but others stem from experience with Wall-Modelled LES (WMLES),
particularly in the study by Nikitin et al. [2].

In the romantic vision, research is certainly not done to build weapons or
even other machines, let alone to make money (weather and climate forecast
receive somewhat more respect). The objective is beauty in resolving ques-
tions, which were created by real-life turbulence but have acquired a value
of their own. Funding from agencies and companies with practical purposes
is accepted, and careers are built. In the practical vision, the needs of the
community to predict and manage turbulence in the real world are always
kept in mind, although often with a long-term view, sometimes fifty years.
An example of romantic problem is that of possible finite-time singularities
in the Euler equations; the argument that these are related to the energy
cascade (which occurs in real life) is thin. A more extreme example would
be to study the Navier-Stokes equations in four dimensions. A less extreme
example is to study Decaying Isotropic Turbulence in great depth. There is
a tendency in some circles and especially in RANS modelling to approach all
turbulent flows as a perturbation of DIT, which has no rational basis and is
counter-productive.

Again using simple words, LES studies with a fixed filter width, and grid
refinement until the solution is highly accurate, follow the romantic vision. A
vision which also has merit considers that the Navier-Stokes equations sup-
plemented with an SGS model, itself tied to a filter of arbitrary size, do not
deserve a very accurate solution. This vision considers the SGS model itself as
an “error term,” which is reduced by narrowing the filter. In simple situations,
the eddy viscosity scales with ε1/3Δ4/3 with ε the dissipation rate and Δ the
grid spacing. Romantic researchers would probably not dispute the idea that
making the filter and grid size about the same makes the best use of a given
amount of computing, as it allows the resolution of “as much turbulence” as
the grid can support. Practical researchers thus view the problem of LES with
a fixed filter size as artificial.

Turning to supply and demand, the supply vision considers that the only
responsibility of the research community is to provide increasing knowledge
and performance, for instance measured by Reynolds number. In numerical
work, this kind of progress is guaranteed by the steadily increasing computing
power, whereas experimentalists receive only modest help from new technol-
ogy. In DNS algorithms, no drastic advances have been made in many years,
and none are likely in the future. This is for simple geometries, in which spec-
tral methods have been dominant; for complex geometries, much remains to be
done to produce a very-low-dissipation shock-capturing unstructured-grid sys-
tem. The estimate by Moin and Kim [3] that DNS will be possible for airplanes
around 2080 with 1016 grid points has not been challenged. Disappointingly,
recent years have allowed an order-of-magnitude increase in Reynolds number
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over the first viable DNS runs, but a much finer determination of the Kar-
man constant, for instance, has been surprisingly resistant. Many studies have
shown that LES with near-resolution of the wall layer is roughly 10 times less
expensive than DNS. This is helpful, but worth roughly a factor of 101/4 in
Reynolds number, a small ratio. Another measure is that this approach might
be workable in 2074 rather than 2080. This is Quasi-Direct Numerical Simu-
lation, or QDNS, with eddy-viscosity levels of only a few times the molecular
viscosity [1]; it is also called “Wall-Resolved LES” by colleagues who have
more appreciation for it than present authors do. A valid question to them is:
what is the exact purpose of such work? It seems not to contribute to real-life
predictions, and also not to constitute pure research, unlike DNS, because
it contains an adjustable empirical model and the grid cannot be refined or
coarsened much while retaining the same nature of the simulation.

The “demand” view is that much higher Reynolds numbers are needed in
the general fields of transportation and weather, so that an LES method is a
worthwhile goal only if it allows a quantum leap in Reynolds number. This
leads to the position that Wall Modelling remains the principal challenge in
LES research. In general, it may be more useful to start from a general method
and improve its accuracy, than to restrict work to cases which can be treated
accurately and marginally extend the range of such cases.

The advantage of WMLES extend beyond Reynolds number. For instance,
it can accommodate rough walls, whether the rough surface is a shirt, a lawn,
or a parking lot. Other effects such as non-uniform transpiration can be mod-
elled in a statistical sense.

The arguments in favor of DES [1] do not need to be repeated in detail here.
Again the estimate that WMLES of a wing will become possible around 2045
with 1011 points has not been challenged to the authors’ attention. However,
simulations with over 109 points are imminent, which may indicate that the
rate of increase in computing power has been faster than assumed in 1997.
Alternatively, these simulations may not involve generalized coordinates, nor
run over the number of time steps deemed necessary for the wing, namely
5× 106. The wing problem involves a boundary-layer thickness much smaller
than the airfoil chord, itself smaller than the span, which in turn is smaller
than the length of the trailing vortices which need to be established. The
wing simulation suffers from a disparity of both length and time scales, while
internal and “academic” turbulence modules may not suffer disparities as
severe, making it easier to reach an impressive number of grid points without
going through so many eddy turnover times.

While DES is recognized as necessary for large thin boundary layers, the
trend to address thicker boundary layers with WMLES instead of RANS,
including inside a DES, has been undeniable. It presents a hope of breaking
the “accuracy barrier” of RANS in predicting separation. However, it is far
from a simple endeavour. The principal obstacles are “Log-Layer Mismatch”
or LLM which is discussed at length, and the creation of LES content in an
attached boundary layer, which is not discussed here.
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2 Grid Design and Wall Modelling

The y axis is normal to the wall, x is in the flow direction, and z lateral.
The grid spacings are denoted by Δ, and Δ‖ is representative of Δx and Δz
(which are often equal in what follows).

2.1 Wall-Normal Grid Distribution

The established RANS practice requires a first y+ of about 1, followed by
prudent stretching, with a ratio of 1.25 at the most, and then by more nearly
uniform spacing in the outer layer. It has worked in WMLES also, when
using “integration to the wall” and aiming at cubic cells in the outer layer.
Note that the concept of “working” is relative, in the sense that one could
possibly blame this practice for LLM, or other problems. The limits on y+

and stretching ratio derive directly from the logarithmic profile, and the cubic
cells provide harmony between the three directions. This could not be the very
best manner in which to allocate grid points, especially if one had the freedom
of unstructured grids.

At increasing Reynolds numbers, the number of y grid layers increases,
but only logarithmically: roughly like 5× log(Re), if the stretching ratio is 1.2
[2]. This is very manageable. This integration to the wall creates shallow grid
cells, in which RANS reasoning is justified, which constitutes a “theoretical
windfall.” On the other hand, if the behaviour of the turbulence in cells from
y = 0 to y ≈ Δ‖ is very predictable, a wall-function approach is essentially
just as justified physically. It is, however, more difficult to design, program,
and keep stable.

2.2 Wall-Parallel Grid Cell Area

Many discussions have centred on the wall-parallel spacings in wall units,
Δx+ and Δz+, but with upcoming remarks specifically on the aspect ra-
tio Δx+/Δz+, it is logical here to address the area Δx+Δz+. The argu-
ment against QDNS is not new. An LES method with engineering and
weather-forecast potential needs wall modelling, allowing unlimited values for
Δx+Δz+, rather than the values around 150 in DNS and maybe 500 in QDNS.
WMLES has been exercised at 4 × 106 with impunity. This is not very easy,
LLM being the first difficulty, but it is not out of reach any more (§4), and
the current level of motivation in the community is gratifying. In fact, the
intermediate régime with Δx+Δz+ in the range of a few thousands is more
difficult than the fully-fledged wall-modelled régime.

2.3 Wall-Parallel Grid Aspect Ratio

In DNS of two-dimensional flows, it is a fine tradition that the longitudinal
grid spacing Δx+ is about three times larger than the lateral spacing Δz+,
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with values in the vicinity of 21 and 7. This is well justified by examination
of the spectra in x and z. Recent DNS work in a three-dimensional but pre-
dictable flow, the Ekman layer, aligns the grid in that manner by rotating
the freestream vector [4]. These simulations, on structured grids, continue
the anisotropic patch shape into the outer region of the flow, out of conve-
nience, even though the anisotropy of the smaller eddies is different, and the
Kolmogorov length scale has grown, albeit only like y1/4.

The 3-to-1 aspect ratio is also deep-rooted in LES. This is understandable
for QDNS, of course, but not as much for WMLES, and one could ask whether
it is out of habit. A genuine answer to this would require extensive tests aimed
at the computing expense required to reach a certain accuracy. However, such
a determination would not have much value to the users of LES, for the
following reason.

The flows of interest, for which the accuracy advantage of LES over RANS
is worth the expense, all have three-dimensional pressure gradients. These are
precisely the flows in which the skin-friction direction is part of the answer,
not of the problem statement, so that building it into the grid is not possible.
This direction is also very sensitive to parameters such as angle of attack,
sideslip, and Mach number. One would have to imagine adaptive gridding with
a sensor for the “longitudinal” and “lateral” direction, which would gradually
redesign an LES grid while incipient and/or massive separation builds up.
Later generations may achieve this, but the conclusion today has to be that
a good WMLES method cannot be dependent on the x-z grid aspect ratio.
Grid design, including unstructured, needs to produce roughly isotropic cells,
and the solver must be tolerant of somewhat different shapes.

3 Resolved and Modeled Reynolds Stresses

When wall modeling is applied, the Reynolds stresses are normally the sum
of Modeled and Resolved Reynolds Stresses. It is normal for the Modeled
Stresses to rival the Resolved Stresses, even in a simulation of high quality,
and a task for the LES research community is to properly represent to the
community at large what the correct behaviour is.

3.1 Shear Stress

The stress in question is that in the direction of the mean skin friction. It
has very much control, and fortunately its behaviour is well understood. The
resolved shear stress is −u′v′ and, with an eddy-viscosity model, the modeled
shear stress is νt(uy + vx). Figure 1 shows how the two communicate when the
grid is refined; the level at which they cross is roughly 1.3 Δ‖. This length scale
is equivalent to ν/uτ for the viscous layer; in DNS, the viscous and Reynolds
stress cross at a fixed y+. At this Reynolds number, the viscous stress is not
seen with a linear axis for y. As the grid resolution approaches QDNS, the
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Fig. 1 Components of the shear stress in WMLES. - - -, modeled stress; - — -,
resolved stress. Left, fine grid; right, coarse grid with two codes [2]

modeled stress vanishes. The figure also shows that the scatter when DES is
applied in two codes is modest.

The important fact is that, in a successful simulation, the sum of the
modeled and resolved shear stresses closely approximates the Reynolds shear
stress a DNS would produce. When it does not, the viscous stress ν∂U/∂y
must compensate, since the total of the three stresses is imposed, so that U
itself is incorrect. This is the essence of LLM and suggests how to remedy it;
see §4.

3.2 Other Reynolds Stresses

The stresses besides the dominant shear stress are less well understood, for at
least three reasons.

First, the exact or “DNS” behaviour is not known precisely even in a
channel, the way it is for the shear stress. It is very plausible that the stresses
obey outer scaling of the type u2

τf(y/δ) in the outer layer [5]. However, it is
now confirmed that they do not obey inner scaling of the type u2

τf(y+) in
the inner layer, at least at the Reynolds numbers reached. The near-wall peak
values show no sign of saturating. Consistently, the stresses do not display the
plateau which would be needed to satisfy an overlap argument. It is plausible
but not confirmed that u′2 and w′2 have a logarithmic layer instead of a
plateau [5].

Second, the behaviour of the resolved stresses towards the wall is controlled
by the grid spacing in a manner that remains uncertain. As y tends to 0 the
DNS spectrum extends to higher and higher wavenumbers k, plausibly with a
1/k slope (which gives the logarithmic layer). The LES spectrum is truncated,
assuming a structured grid or a similar scaling, which presumably leads to a
plateau. However, this is only for u′ and w′, whereas v′ has its own behaviour
like the shear stress. The pressure fluctuations, which are most important in
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Fig. 2 Resolved diagonal Reynolds stresses in WMLES at Reτ = 20, 000. - - -,
coarse grid; —, fine grid

some applications, may have a different pattern yet. This is seen in Fig. 2. Two
of the stresses, v′ and w′, rise on the finer grid as may be expected, but the
third one does not rise everywhere, and shows an effect even on the centreline.
In addition the asymptotic behaviour is, nearly, for u′ and w′ to approach the
wall as O(1) and v′ as O(y), i.e., the inviscid behaviour (they follow y and y2

in the viscous layer of a DNS, of course). This is due to wall modelling and
the high Reynolds number. A look back at the resolved shear stress confirms
this: it is close to O(y) behaviour, rather than the viscous y3. Thus, DNS and
WMLES may have drastically different patterns near the wall.

Third, the modeled diagonal stresses produced by a typical RANS model
are rather poor. As a result, adding them to the resolved diagonal stresses
has little reason to be as successful as it is for the shear stress. One-equation
models, of course, produce meaningless diagonal stresses. Two-equation mod-
els invariably produce the plateau with k+ = 1/

√
Cμ, because their structure

leads to the inner and outer laws. They also completely miss the anisotropy
which is so pronounced near the wall.

For these three reasons, obtaining accurate diagonal Reynolds stresses from
a WMLES is a distant goal. In most applications, it is not an essential one.
The wall layer has a dialog with the outer layer based on the shear stress.
In other applications, the full rms of a quantity is needed. Pressure comes
to mind, for aerodynamic noise purposes, whether community or cabin noise.
In such cases, extending the LES spectrum with the correct law, for instance
1/f , is an option if it is done with care and only after the LES grid is fine
enough to indicate the 1/f or similar behaviour.
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Fig. 3 Response of channel-flow near-wall structures to stimulation. Vorticity mag-
nitude. Grid spacing Δ‖ = 0.1. Left, simple DES-based WMLES; right, EWMLES

4 Partial Solution to Log-Layer Mismatch

This will be called Energized WMLES. This solution is partial in the sense
that it has not yet been successfully combined into a non-zonal method with
DDES or even the original DES (with Δ‖ large enough to ensure the boundary
layer is fully covered by RANS), nor tested with moderate values for Δx+

and Δz+, i.e., towards the QDNS régime. On the other hand, it is very simple
and applicable to WMLES with any SGS model, for instance Smagorinsky’s,
pending the calibration of a single constant. It is insensitive to grid aspect
ratio and flow direction, and has no need for random numbers, let alone a
database. It requires the wall-normal direction, which is physically justified
very near a wall, and can be obtained as the gradient of the wall distance.
Other approaches to correct sluggish near-wall behaviour in WMLES also are
zonal and inappropriate in a RANS boundary layer.

Knowing that LLM is very plausibly linked to a low level of resolved tur-
bulence at heights of the order of Δ‖ [6], the idea is to add a source term to
the wall-normal momentum equation,
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√
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where NSE symbolically represents the usual Navier-Stokes terms and S is
the modified vorticity of the S-A model (and can be the plain vorticity). The
new term boosts the wall-normal fluctuations and therefore the resolved shear
stress, and can be adjusted to remove LLM. This was done in channel flow at
Reτ = 20, 000 with two grids, one of them fairly coarse (Δ‖ = H/10, where
H is the channel half-depth) and the other twice as fine in x and z. The effect
is clear in Fig. 3; short waves are visibly enhanced. In the outer region, the
two simulations are much more similar (not shown).

The involvement of the eddy viscosity νt in (1) would probably be helpful
when creating LES content in an initially RANS-dominated flow, as high
values of the modeled Reynolds stress νtS will naturally stimulate the resolved
Reynolds stress. A fair value for the length y0 is Δ‖, and typical grids will
allow an accurate enough resolution of the Gaussian fe in the y direction.
Other functions than the Gaussian which integrate to y0 would also work,
as would somewhat narrower or wider Gaussians. The value of 1.08 for the
constant Ce suppresses LLM well in Case C1 of Nikitin et al., which has equal
spacing in x and z. This is seen in Fig. 4, which also confirms agreement
between the present solutions and those of Nikitin et al. [2]. In addition, the
response to grid refinement is good. Without EWMLES, the mismatch merely
moves to lower values of y/H when the grid is refined; this is fully consistent
with the scaling of errors in the “super buffer layer” with grid spacing. With
EWMLES, there remains a much fainter imperfection in the log law, which
also “slides” down during grid refinement.

Another view at the hidden limitations of EWMLES in this preliminary
version is that it was applied only to channel flow, in which the average wall-
normal velocity v is zero. In that sense, it would be more accurate to write
(1) with Cefe(y)

√
νtS/y0 (v − v), which brings up the issue of defining v in
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Fig. 5 Response of channel-flow Reynolds-stress profiles to stimulation. - - -, simple
DES-based WMLES; —, EWMLES. Left, shear stress; right, diagonal stresses. Upper
row, coarse grid; lower row, fine grid

general. If v is defined by a local filtering operation, the method will resemble
the application of a negative eddy viscosity (an idea which the authors have
encountered while reviewing recent manuscripts).

Figure 5 presents the Reynolds stresses, with both the effects of EWMLES
and of grid refinement. A modeled component is plausible only in the case of
the shear stress; for the others, only the resolved stress is shown. The effect
of EWMLES on the shear stresses is dramatic: the modeled stress is down
by almost half at y = Δ‖. This is consistent with Fig. 4, in that the shear
rate dU/dy with LLM is too high by nearly a factor of 2 in that region. The
response to grid refinement is correct. With EWMLES the diagonal stresses
similarly approach the wall with noticeably higher values, and accentuate
the “inviscid” pattern mentioned earlier. Just like grid refinement, EWMLES
tends to raise v′ and w′, but to lower u′ over most of the layer.

To summarize, EWMLES may represent a fruitful research direction. It
is an illustration of the “demand” view of turbulence research, in that it
was strongly constrained to be compatible with grids of simple designs, even
unstructured, and not to need any large source of knowledge such as a database
(nor even random numbers). This continues the constraints which were set by
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Nikitin et al. [2]. The compatibility with overall DES capability is another
matter.

5 Outlook

The “vision” comments made do not imply that research is ever completely
wasted; in a sense, all problems are worth solving. However, problems in tur-
bulence are so numerous, stubborn and inspiring that identifying the ones
with the highest value to society and a hope of progress is not just a trivial
matter of survival for the research community. It’s part of the mission.

The comments on expectations of fidelity, principally in the realm of WM-
LES, are not very deep but offer a viewpoint relevant to the validation and
comparison of approaches. In addition, the observation from Figs. 1, 2 and
5 that the resolved Reynolds stresses in a high-Reynolds-number WMLES
approach the wall with the power laws valid in inviscid flow appears new.

Energized Wall-Modelled LES was presented as work in progress, as much
for its simplicity and self-sufficiency as for its accuracy. Still, it conclusively
improved both the mean velocity and the Reynolds stresses. It probably de-
serves testing with other wall models than DES.
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Abstract. Initializing large eddy simulations (LES) in meteorological applications
typically involves prescribing an idealized background atmospheric environment in
which simulations are run. This study investigates LES initialization options using
realistic atmospheric environmental forcings. Analysis of several simulated convec-
tive boundary layer (CBL) cases highlights common sources of initialization-related
errors in LES predictions of CBL structure and evolution as compared to observa-
tional data. Effects of initialization errors on simulated features of the CBL for dif-
ferent evolution patterns of daytime environmental atmospheric flow are analyzed.
Possible approaches toward dynamic adjustment of environmental parameters in
LES of atmospheric boundary layer flows are suggested.
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Atmospheric observations, Meteorological radar profiler

1 Introduction

Turbulent flow structure in the clear convective boundary layer (CBL), which
is commonly observed in the lower atmosphere during daytime hours, is pri-
marily determined by buoyant heat transfer from the underlying surface. In
conjunction with (wind) shear forcing, whose strength can be variable, this
driving mechanism generates turbulent motions on a broad range of scales.
This leads to a progressive deepening of the boundary layer as long as the sur-
face buoyant forcing remains strong. The CBL typically develops in the stably
stratified ambient atmosphere. Stratification strength is usually expressed in
terms of the vertical gradient in the background potential temperature profile.
This stratification can be weak (sometimes, almost neutral) – in this case, the
CBL grows relatively fast. When stratification is strong, it effectively sup-
presses CBL growth into the free atmosphere aloft impeding entrainment of
quiescent free-atmosphere air into the turbulent CBL core. Previous stud-
ies have shown that the surface buoyancy flux (combination of temperature
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and moisture surface fluxes) in conjunction with the background atmospheric
stratification and wind shear are the principal forcing mechanisms in the at-
mospheric CBL [10, 8, 12, 14, 2, 3]. Parameters of the ambient atmosphere
in LES CBL studies conducted so far were typically prescribed in an ide-
alized form, see e.g. [6]. In these applications, LES was used as a tool to
evaluate, qualitatively and quantitatively, various physical mechanisms that
determine CBL flow structure (in this respect, LES did a great job) rather
than predicting particular features of the CBL flow structure under specific
environmental conditions. Exceptions, in this sense, were studies by [12], who
initialized their LES of sheared CBL with wind and potential temperature
profile data from the U.S. Southern Great Plains (SGP) Atmospheric Radi-
ation Measurement Climate Research Facility (ACRF), and by [4], who used
observational data from different platforms during one day of the International
H2O Project (IHOP) field campaign in summer of 2002 to initialize LES of
CBL in the vicinity of dryline. These two studies provided valuable, although
limited (number of cases studied), information about the abilities of LES to
handle real CBL flows coupled with the changing ambient atmosphere.

There is growing demand from the atmospheric remote-sensing commu-
nity for high-resolution data on turbulence structure in atmospheric boundary
layer flows to be used in radar and other remote-sensor simulators (see e.g.
[13]). The CBL, where the dominant portion of turbulence energy is carried
by large eddies with scales on the order of boundary layer depth, appears to
be a natural subject for application of an LES-based turbulence data genera-
tor. However, in order to provide data for remote-sensor simulators operating
under diverse weather conditions in the CBL, the LES should be able to ad-
equately reproduce CBL turbulence dynamics with actual external forcings.

In the present study, LES runs have been conducted with realistic envi-
ronmental atmospheric settings corresponding to particular summer days of
2004 and 2007 with clear CBLs observed at the SGP site. Besides providing
data for evaluation of a radar simulator, the purpose of these numerical ex-
periments was to evaluate accuracy of LES predictions with respect to various
CBL features and investigate possible improvements of the LES settings to
make the numerical predictions more accurate. After brief description of the
employed LES code in Sect. 2, initialization procedures will be considered
in Sect. 3, followed by a presentation of the analyzed LES data in conjunc-
tion with atmospheric soundings and radar observations in Sect. 4. Potential
improvements of the LES setup will be addressed in Sect. 5.

2 Large Eddy Simulation

The LES code in use for this study employs the subgrid closure from [5].
Detailed explanation of the code can be found in [7], with revised boundary
conditions described in [6]. Table 1 presents general LES settings employed.
The time step for the LES runs was calculated from stability constraints,
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Table 1 Settings of LES

Parameter Setting

Domain size 5.12 x 5.12 x 4.0 km3

Grid 256 x 256 x 200
Surface fluxes See Eq. (9)
Geostrophic wind Derived from RUC data as in Eq. (10)
Time step Based on stability conditions: ∼ 0.6–1.2 s
Lateral BCs Periodic for all variables
Upper BCs Neumann with sponge layer in the upper 20% of domain
Lower BCs No-slip for velocity; Neumann for θ, q, E (subgrid energy);

Monin-Obukhov similarity functions as in [7]
Subgrid closure Deardorff closure scheme as in [5]

varying between 0.4 and 1.2 s. Flow statistics were calculated every 50 time
steps using horizontal averaging. Calculated statistics included means, vari-
ances, co-variances, and third-order moments. Simulations were initiated with
vertical profiles of u (along x axis) and v (along y axis) components of the wind
velocity, potential temperature (θ), specific humidity (q), x and y components
of the geostrophic wind (ug, vg), and time series of fluxes of temperature (w′θ′)
and moisture (w′q′) measured at the underlying surface. The geostrophic wind
represents the external forcing related to the horizontal gradient of the large-
scale pressure field. Initialization procedure details are presented in Sect. 3.
The governing equations for the employed LES are the following:

∂ũi

∂t
= −∂ũiũj

∂xj
+ g

θ̃v − θv0

θv0

δi3 −
∂π̃

∂xi
+ f

(
ũj − ugj

)
εij3

+
∂

∂xj

[
ν

(
∂ũi

∂xj
+

∂ũj

∂xi

)
− (ũiuj − ũiũj)

]
, (1)

∂ũi

∂xi
= 0 , (2)

∂θ̃v

∂t
= −∂ũiθ̃v

∂xi
+

∂

∂xi

[
μ

(
∂θ̃v

∂xi

)
−
(
θ̃vui − θ̃vũi

)]
, (3)

where i, j = {1, 2, 3}; t is time, xi = (x, y, z) are the right-hand Cartesian
coordinates, ũi = (ũ, ṽ, w̃) represent resolved velocity components, θ̃v is re-
solved virtual potential temperature, ν is kinematic viscosity, and μ is molec-
ular thermal diffusivity. Components of subgrid stresses and subgrid θv flux,
respectively, are represented by ũiuj − ũiũj and θ̃vui − θ̃vũi. Tildes in these
equations represent volume averaging. Normalized pressure, π̃, is defined as
π̃ = (p̃− p0) / 0, where p̃ is resolved pressure, p0 is hydrostatic atmospheric
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pressure,  0 is constant reference density, and θvc
is constant reference poten-

tial temperature.
Subgrid stress and θv flux are parameterized in terms of subgrid eddy

viscosity (Km) and subgrid eddy diffusivity (Kh) following [5]:

ũiuj − ũiũj =
2
3
Eδij − 2Kms̃ij , (4)

θ̃vui − θ̃vũi = −Kh
∂θ̃v

∂xi
, (5)

where s̃ij = (∂ũi/∂xj + ∂ũj/∂xi) /2 is the deformation tensor for filtered ve-
locity and E is subgrid kinetic energy, which is determined from the following
balance equation:

∂E

∂t
+

∂ũiE

∂xi
= 2Kms̃ij

∂ũi

∂xj
−Kh

∂θ̃v

∂x3
+

∂

∂xi

[
2Km

∂E

∂xi

]
− ε , (6)

where ε represents the subgrid viscous dissipation rate. Eddy viscosity and
diffusivity are expressed through mixing length l and E as

Km = 0.12lE1/2 , Kh = (1 + 2l/Δ)Km , (7)

where Δ = (ΔxΔyΔz)1/3 is effective grid-cell size, and ε ∝
(
E3/2/l

)
.

Subgrid mixing length l is evaluated as

l = Δ if ∂b̃/∂z ≤ 0 ,

l = min
{
Δ , 0.5E1/2/

(
∂b̃/∂z

)1/2
}

if ∂b̃/∂z > 0 . (8)

A Poisson equation for π̃ is constructed by combining the continuity and
momentum balance equations as in [11]. This equation is solved numerically by
the fast Fourier-transform technique over horizontal planes, and by tridiagonal
matrix decomposition in the vertical.

3 Initialization Procedures

An example of typical initialization of LES with idealized atmospheric profiles
is illustrated in panel (a) of Fig. 1; note that u = ug are held constant during
the run as is w′θ′v, with θ represented by a steady linear profile. In this study,
LES is initialized with realistic environmental profiles schematically shown
in panel (b) of Fig. 1. These realistic environmental settings often include
multiple inversions (areas of higher stability) and sharp wind changes with
height (wind shears). Under realistic conditions, w′θ′v at the surface is not
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Fig. 1 Schematic representation of idealized (a) and realistic (b) initial data

taken constant, rather it reflects the evolution of the intensity of solar heating
over the course of the day.
Initialization data for this study were collected from the SGP ACRF site in
Lamont (north central Oklahoma) equipped with balloon borne instruments
and an eddy-correlation system for measurement of surface fluxes. In our LES
exercise, only clear CBLs were simulated, narrowing the number of possible
cases. Surface fluxes of temperature and moisture were calculated from mea-
sured sensible and latent heat fluxes as

w′θ′ =
H

 c cp
, w′q′ =

LH

 c Lv
, w′θ′v = w′θ′ + 0.61θv0w

′q′ , (9)

In the above expressions, w′θ′ is surface kinematic temperature flux, w′q′ is
surface kinematic humidity flux, H is sensible heat flux, LH is latent heat
flux (heat release from the condensation of water vapor), cp is specific heat of
water, and Lv is latent heat of vaporization. Geostrophic wind components are
evaluated from the Rapid Update Cycle (RUC) [1] objective analysis system,
these data are available hourly. Geostrophic wind is assumed the same in all
vertical nodes of the LES domain. Four RUC grid points surrounding the
Lamont (LMN) site are used in calculating horizontal gradients of pressure,
deriving the geostrophic wind components as

ug =
−1
 cf

∂p

∂y
, vg =

1
 cf

∂p

∂x
, f = 2Ω sinφ , (10)

where f is the Coriolis parameter, Ω is the Earth’s angular velocity, and φ
is the site latitude. Profiles of actual wind, obtained either from RUC and/or
from the local sounding at LMN, are interpolated to the vertical nodes of
the LES domain. Near-surface portions of these profiles are additionally ad-
justed in order to match the no-slip condition at the surface, assuming the
logarithmic wind profile throughout the lowest LES cell layer.
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Two initialization methods were used in this study: local and composite.
The local method uses data from the LMN site to obtain initial vertical profiles
of θ, q, u, and v, while RUC analyses are used to calculate profiles of ug and
vg. These profiles are specified only at model initialization time, and are not
updated during the run. Surface fluxes, on the other hand, are updated every
30 min. Sounding data for LMN are available every 6 h, with 12 Coordinated
Universal Time (UTC) (7 h local time) sounding data used for initialization.
The LMN sounding data contain more than ten times that of traditional
soundings from U.S. National Weather Service (NWS) sites. This allows more
features of vertical atmospheric heterogeneity to be represented in the initial
profiles. In contrast, composite initialization uses sounding data from five
NWS sites as well as reduced resolution data from LMN aggregated into a
single profile via an inverse distance weighted average. This procedure can be
used for initialization of LES in locations where local data are not available.
Initialized LES is then run for approximately 12 h of simulated time, or until
the temperature flux becomes negative (sunset).

4 Case Description and Analysis

In central Oklahoma, only a few summer days normally contain a clear CBL
throughout the course of the day. In order to identify clear CBL days, atmo-
spheric radiation data from LMN were used. When no clouds are present, the
diurnal distribution of solar radiation flux is represented by a smooth, nearly
symmetric curve. As the employed LES uses temporally constant ug and vg to
account for large-scale pressure forcing, an additional selection criterion was
small variability of geostrophic wind throughout the 12 h period of simulation.
This condition turned out to be rather restrictive (see discussion below).

The rationale for using atmospheric initialization with realistic environ-
mental settings is to attempt accurate verification of LES statistics via remote-
sensing platforms, such as meteorological profiling radars. Meaningful verifi-
cation is possible if the LES is capable of reproducing a variety of remotely
sensed features of the CBL: wind shears (both speed and directional), gra-
dients of temperature and humidity, and capping inversion structure. The
elevation, and especially the vertical extent, of the capping inversion are diffi-
cult to determine with any precision even in LES. In this study the maximum
gradient of θ was used as an indicator of capping inversion height; taken, in
turn, as a measure of CBL depth [15].

Pino et al. (2003) [12] attempted similar use of realistic atmospheric set-
tings. However, their initial profiles were low resolution and remained semi-
idealized. Their study, nevertheless, suggested that initializing LES with re-
alistic settings was possible. The initial profiles of atmospheric variables in
our study matched real atmospheric soundings as closely as possible. We also
aimed at closely reproducing the observed sounding after 6 and 12 h of simu-
lation. These times roughly corresponded to midday and sunset.
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Prediction accuracy of CBL depth was used as a major criterion for quality
of the LES in our application. We labeled a case fair when CBL depth was
estimated within a few hundred meters of CBL depth from 0 UTC sounding
data (12 h), and winds were in the same direction and close magnitude to those
in 0 UTC sounding data. Cases were rated poor if after 12 h, CBL depth was
off by a large margin or winds were vastly different from observational data.

4.1 Fair Case – 8 June 2007

Results shown for this case were obtained via the local initialization method,
using RUC analyses on a higher-resolution grid (compared to 2004 cases).
The considered case represented a unique atmospheric state. During the pre-
ceding night, a cold front had passed through LMN, where approximately 1.5
mm of rain fell. At 12 UTC, the upper atmosphere is still in transition be-
tween the trough associated with the cold front and the high pressure behind
it. The LMN site is under an area of surface high pressure and light winds.
Geostrophic wind components are −15 ms−1 (ug) and −5 ms−1 (vg) near
the ground, as shown in Fig. 2. Both components considerably (and nearly
synchronously) change in the vertical toward the domain top. Twelve h later
(0 UTC) the geostrophic wind weakens to near zero as the vast area of high
pressure moves further into the central plains.

The vertical wind distribution at 12 UTC displays a low-level jet (LLJ)
with the peak wind speed at a height of about 700 m. Near-surface wind shear
associated with this jet enhances vertical mixing early in the day. Eventually,
as the CBL grows, the LLJ is completely mixed out, and the actual wind
distribution becomes close to geostrophic. This can be seen in Fig. 3, where the
LES profiles are shown at three times. Atmospheric stratification, according
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Fig. 3 LES (black) and LMN (gray) profiles at 12, 18, and 0 UTC for 8 June 2007

to the initial sounding is rather weak throughout the lower 500 m becoming
stronger between 800 and 1200 m. This feature causes relatively fast growth
of the CBL during the morning hours, with slower growth later in the day.
Lamont sounding data at 0 UTC show CBL depth to be about 1300 m, with
depth peaking near 1500 m at 18 UTC. A possible explanation for this CBL
contraction is the movement of cooler air into the region behind the front
that is not captured by the current version of the LES code. However, the
CBL evolution predicted by LES for this case decently match the observed
temporal changes of CBL depth with time over the main portion of the day.
The procedures outlined in Sect. 5, in particular, temporal adjustment of
geostrophic wind during the run and accounting for temperature advection,
could further improve LES performance under atmospheric conditions similar
to those observed in this case.

Meteorological radar profilers are able to detect vertical variability of the
CBL structure, as they are sensitive to changes in the refractive index. This
index may be directly expressed through air temperature and pressure, and
additionally through water vapor mass concentration (specific humidity, q) for
humid air. In the refractivity field, the CBL top is clearly seen as the boundary
between warm, dry air in the free atmosphere aloft and cooler, moist air
inside the CBL. Spatial variability of refractivity is represented by its structure
function, C2

n, defined in [13]. This quantity allows direct calculation from LES
data. Radar range-corrected power, η, is related to C2

n as η = 0.379C2
nλ

−1/3,
where λ is the radar wavelength in cm. The LES-derived C2

n values for the
considered CBL case in this section are compared in Fig. 4 (top panel) with
C2

n derived from radar profiler measurements at the LMN site for this day.
One can see that LES produces C2

n fields that closely match the trend in radar
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Fig. 4 LES-derived C2
n (top) and uncalibrated radar-derived C2
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data. Large values of C2
n in both plots show large fluctuations of temperatures

and humidity near the CBL top.

4.2 Poor Case – 20 July 2004

Conditions at LMN on 20 July 2004 were characterized by high pressure with
an approaching surface low and pre-frontal trough. No rainfall was reported,
and winds were light with a 12 ms−1 LLJ present. There was minimal warm-
ing leading to a slight increase in the background θ profile, and slight changes
in the background q profile. Geostrophic wind was almost constant in time
in the x direction; however, significant changes took place, over the course
of the day, in the y direction, as shown in Fig. 5. It is important to note
that the initial θ profile in the considered case is nearly neutral, correspond-
ing to very weak stratification. As a result, by the end of the day, the CBL
depth is effectively undefined via sounding data, as mixing of CBL air with
weakly stratified environmental air produces a deep CBL with poorly identi-
fiable capping inversion (region with large θ gradient). Overall, the LES well
captures this strong mixing and fast growth of the CBL, but it is almost im-
possible to derive any measurable integral parameters of the CBL (e.g. CBL
and entrainment zone depth) for practical applications, see Fig. 6. Although
the x component of the actual wind (u) is predicted quite accurately, the y
component (v) is off by 8 ms−1 and points to the strong over-mixing of the
corresponding component of momentum in this case.

Composite profile data were not available for initialization of this case,
so it is hard to say whether they would produce better results given the
initial background atmospheric state and its evolution over the course of the
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Fig. 5 Initial (12 UTC, solid lines) and observed (0 UTC, dashed lines) profiles
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Fig. 6 LES (black) and LMN (gray) profiles at 12, 18, and 0 UTC for 20 July 2004

day. Apparently, any LES improvements are rather problematic in this case
as many of the features that determine the CBL evolution under considered
conditions are beyond current capabilities of LES designed for atmospheric
boundary layer applications. To adequately account for these features, the
LES should either be run in a nested mode with a larger-scale atmospheric
model – such option has recently been discussed in [9] – or be fed with data
from fine-scale, multi-platform atmospheric observations presently not readily
available.
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5 Potential Improvements of LES

Eight atmospheric CBL cases were analyzed in the reported LES exercise
with the initialization procedures specified in Sect. 3. The performed analyses
suggest that certain changes to the LES code may improve the prognostic
capability of LES in a realistic atmospheric mode. These changes could include
update of geostrophic wind profiles, adjustment of the background θ and q
profiles in the process of CBL development, increasing temporal resolution of
surface fluxes, and accounting for large-scale temperature advection (thermal
wind).

While cases with weak winds and small temporal changes are reproduced
well by LES, the majority of simulated cases showed some disparity between
output statistics and observational data. With RUC analysis data available
hourly, these data can be used to modify ug and vg profiles in the LES during
the run resulting in a temporally changing geostrophic wind forcing. Avail-
ability of surface flux data with 5 min resolution (six time finer than currently
employed) would help to more accurately adjust CBL evolution to the primary
forcing driving this boundary layer flow.

The employed LES code does not take into account temperature advection
associated with baroclinicity (thermal wind). In the context of the present LES
exercise, the magnitude of the thermal wind is proportional to the vertical
change in geostrophic wind, which can be retrieved from RUC analysis data.
Incorporation of temperature advection in the LES equations would allow
the θ profile to adjust to this large-scale forcing mechanism. A method for
doing this can be found in [14], where LES was applied to simulate baroclinic
mixed layers with idealized environmental atmospheric forcings. Generally,
advection resulting in the evolution of initial profiles is very likely in the
real atmosphere. It would be possible to account for such effects by gradualy
adjusting the profiles of θ and q above the CBL, if information about their
evolution were available.
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Abstract. We take a closer look at the behaviour of immersed boundaries close to
the immersed boundary. Two kinds of errors usually occur. They are interpolation
errors and the error which occurs because we do not exactly satisfy zero penetration
velocity near the immersed wall. We try to assess the relative importance of both
for the case where the immersed wall coincides with a grid boundary.

Keywords: Immersed boundary method, Error close to immersed wall

1 Introduction

In immersed boundary methods one adds additional momentum sources to the
momentum equations to represent the presence of an obstacle. An advantage
is that obstacles can be added without making a new grid. For a pressure-
correction based model, this leads to another big advantage. In this type of
method a Poisson equation for the pressure has to be solved. If obstacles are
present one has to use an iterative Poisson solver which typically uses most of
the CPU of the problem. If, like with immersed boundary methods, only the
momentum equations are changed, the mass conservation procedure does not
have to be changed when adding obstacles and very efficient direct Poisson
solvers can be used.

When using immersed boundary methods one is often interested in the
flow field at some distance from the immersed boundary. However, in case
of quantities like heat fluxes the behaviour close to the boundaries is also
important because we take derivatives to get the flux and these derivatives
depend on quantities in the grid points next to the immersed wall.

In general, for a model which uses pressure correction there are two types
of error that occur when using an immersed boundary method. Often a profile
is assumed for quantities (velocity components, scalar quantities like tempera-
ture) close to the wall, for instance a linear profile. Interpolation/extrapolation
then uses more points inside the fluid domain than just one point, which is the
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case for a second order code. See Fig. 1. The other type of error arises because
the wall-normal velocity component on a wall is not exactly zero. This hap-
pens in pressure-correction codes, where after calculation of the momentum
equations we do a pressure correction which changes the velocity components
by a small, but non-zero amount.

We were interested in the relative importance of the error made by assum-
ing a profile and the error by a non-zero velocity component normal to the
wall. This can be assessed by using three methods: a traditional method us-
ing an iterative solver, a method which uses a well-known immersed boundary
method, namely Verzicco’s method [1], and by using a variant of the immersed
boundary method which uses the same type of boundary condition as the tra-
ditional method and differs only from the traditional method because after
the pressure correction the wall-normal velocity component is not exactly 0.
In the next sections we will describe the details of the flow simulation model,
Verzicco’s method and its variant, the geometry calculated and show some
results of simulations with the two methods.

2 Numerics

The model is a standard second-order staggered finite-volume model using
central differences in space and Adams-Bashforth in time. It uses a pressure-
correction scheme and so a Poisson equation has to be solved for the pressure.
The Poisson equation solver is either a direct method based on FFT, cyclic
reduction and tridiagonal or (in the case of an iterative solver) the Strongly-
Implicit method of Stone (SIP, [2]). The iterative solver gave a divergence of
the order of 1e-4.

3 Immersed Boundary Method

A simple and robust method for implementing an immersed boundary method
which works for all kinds of immersed boundaries (curved, straight, non-
moving, moving) was extensively used by Verzicco et al. [1] after an idea
of Mohd-Yusof. It adds extra momentum sources to the momentum equations
in such a way that the velocity components, when linearly extrapolated from
fluid to wall, are 0. See Fig. 1.

Features to note are, that the velocity is forced to follow a linear profile
near the boundary and that we use two velocity points inside the fluid near
the wall. Adaptions for a higher order polynomial fit are easily made.

The variant we studied (for which some results were shown in [3]) is one
in which we assume that the walls of the obstacle coincide with cell walls, so
that the obstacles must have flat surfaces. The wall normal components can
simply be put equal to 0. For the tangential component we directly look at
the stress. This stress is replaced by the one that would exist for a real wall.
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2

2

21
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1
OBSTACLE POSITION

OBSTACLE POSITION

Fig. 1 Cartesian method of Verzicco. After solution of the momentum equations
as if no wall is there, velocity components do not extrapolate to 0 on the fictitious
wall. The velocity component nearest to the wall is adapted so that it does

See Fig. 2 below. For a scalar we do the same: the flux is replaced by the flux
that would exist in case of a real wall, see Fig. 3. A clear disadvantage with
respect to Verzicco’s method is that the immersed boundary must coincide
with cell walls. Also, the way we impose the immersed boundary depends
on the discretisation because the old tangential stresses and the old scalar
fluxes have to be removed. An advantage is, that no additional extrapolation
or interpolation is necessary when compared to traditional methods using a
real wall. Also, no extra grid points in the fluid are used when compared to
the traditional approach. The only difference is that after pressure correction
the wall normal velocity component will be no longer be exactly zero. An
additional advantage is that, since we work with the stress, a wall law can be
easily used together with this method (the incorrect tangential stress calcu-
lated as if no wall is there is replaced by a stress according to a wall law, which
is calculated in exactly the same way as for a traditional model). Also, the
method can be used inside and outside the obstacle and one does not need to
check whether one is inside or outside. Moreover, there are no non-uniqueness
questions near corners (velocity points close to a corner of a boundary may
be determined by more than one point further into the fluid with Verzicco’s
method). Although there are advantages for the new variant, it is of course
much less generally applicable and mainly useful for studying the flow around
rectangular obstacles and for studying the numerics, as we can distinguish
between effects caused by pressure correction and by interpolation.

For the passive scalar, no-flux boundary conditions were enforced in the
same way for all methods, namely by putting the flux at the wall to 0. A
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W

U

U W=0

U with stress
DZ

Fig. 2 Variant of immersed boundary method. Velocities are calculated as if no
wall is there. After this, the normal velocity on the horizontal cell wall is put to 0,
and the contribution from the shear stress which was applied at the horizontal wall
(which is then not correct) is subtracted and replaced by the stress that would exist
in case of a real wall. The last stress is in discretised form equal to μ U

1/2dz

FLUX

DZ
C

C

Fig. 3 Variant of immersed boundary method. After solution of the scalar equations
as if no wall is there, the scalar flux at the wall is replaced by the flux that would
exist for a real wall. For prescribed scalar on the wall, equal to Cw, this flux would
be k Cw−C

1/2dz

prescribed scalar for Verzicco’s method is enforced by imposing a linear profile
near the wall for the concentration.

4 Flow Geometry and Simulation Details

The geometry considered is that of flow over a cavity, see Fig. 4. The flow
is driven by an imposed pressure gradient, boundary conditions are periodic
in main flow direction (at right angles to the cavity), periodic in spanwise
direction, free-slip on the top, no-slip on all other boundaries. A scalar is
released at the bottom of the cavity, for the scalar we have inflow-outflow
boundary conditions in the main flow direction, periodic boundary conditions
in the spanwise direction, no-flux at the top and no-flux or prescribed value
at the other walls. The tests concern flows without any subgrid model, for a
Re number of 1800, and with an LES model and a wall law (Werner-Wengle),
with a Re number of 16000, with Re based on cavity height H, a typical
velocity scale in the cavity and the viscosity. The subgrid model was simple
Smagorinsky with Van driest wall damping. Together with the flow field we
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calculated a scalar field for two cases, namely no-flux boundary condition
and prescribed scalar on the wall. Grids are quite coarse, 60 cube for the Re
1800 case and 40 cube for the higher Re (LES) case. For the low Re (no SG
model) case the wall yplus is around 2 over most of the boundary, with an
exception near the right canyon wall where the flow hits the wall. Overthere it
is sometimes up to around 6, which is far too big but we let this be so we can
see its effect on the results. For the higher Re case we have yplus of around
40, necessitating the use of a wall law.

For the lower Re number case, the simulation was run until the flow had
become irregular, after which the simulation was continued for another 100
eddy turnover times, which is defined as the height of the (square) cavity
divided by a typical velocity scale in the cavity. Starting from this simulation,
simulations were run for another 30 eddy turnover times for the different wall
treatments after which statistics were taken over another 100 eddy turnover
times. For the higher Re number case, shorter simulation times were used to
get data, namely 20 eddy turnover times were allowed to adapt to a new wall
treatment, and 20 eddy turnover times were used to get averages.

The penetration velocities (non-zero wall normal velocity components at
an immersed wall after the pressure correction) are of order 1e-3 times a
typical velocity in the cavity, the maximum occurring near the sharp corners.

The simulations without subgrid model (low Re) used grid refinement near
the wall and had a domain height of 7 H (H = canyon height), the simulations
with subgrid model (higher Re) used a domain of 4H and used an equidistant
model inside the cavity and a grid stretch in vertical direction. Due to the
different grid for different Re, the source for the scalar was different and one
should not compare concentration values for higher and lower Re.

LEFT RIGHT

CONCENTRATIONS CLOSE TO VERTICAL WALLS

SCALAR SOURCE

H

FLOW

Fig. 4 The canyon geometry. There is flow over the canyon leading to circulation
within the canyon. Near the bottom we release a passive scalar
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5 Results

We show results for several cases, distinguished according to method (tradi-
tional, Verzicco, and the new variant which is called the stress method) and
the type of boundary condition for the passive scalar (which is either no-flux
of prescribed scalar). We show primarily the results for the passive scalar.

The results plotted are average concentration values and RMS of the con-
centration for the first grid cell inside the fluid next to the virtual, vertical
boundary.

A typical output for the concentrations with no model is given in Fig. 5 left,
showing the concentration at the left wall, which is hit by the concentration
first, together with the concentration at the right wall which hits the wall
after some concentration has escaped to the outside so that values are smaller.
These results (and the next four plots) are for no-flux boundary conditions
for the scalar.

A comparison between methods for time-averaged concentration is given
in Fig. 5 middle, showing concentrations at the left wall and Fig. 5 right,
showing concentrations at the right wall. Results are very close.

RMS values of the concentrations are compared in Fig. 6 left and middle
for left and right wall. Here differences are seen between the three methods,
mostly between Verzicco’s method and the other two. The reason for the
differences proved to be the fact that the yplus value for the right wall is (far)
too big, sometimes around 6, to assume a linear profile. Where yplus is decent
(smaller than 2) results are much closer.

Results are also shown for prescribed scalar at the walls, so that the deriva-
tives at the wall have to be accurate. In Figs. 6 right and 7 left we have the
concentrations at the left and right wall. Values are smaller than in the no-
flux case. Differences are already apparent. In 7 middle and right we see the
RMS values compared for left and right wall. Again, differences are biggest
for the bigger yplus values. Not unexpectedly, differences are bigger for the
prescribed scalar case than for the no-flux case.
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Fig. 5 Left: the time-averaged concentration very close to the left and right wall of
the canyon. Middle and right: Comparison of time-averaged concentration close to
the walls between several boundary treatments (indicated with stress for our variant,
verz for Verzicco’s method and standard for a standard method)
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Fig. 6 Left: RMS values of concentration at left wall, zero-flux at wall case.
Middle: RMS values of concentration at right wall, zero-flux at wall case. Right:
time-averaged values at left wall for prescribed scalar at the walls. Results for cal-
culations using several boundary treatments (indicated with stress for our variant,
verz for Verzicco’s method and a standard method using an iterative Poisson solver)
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Fig. 7 Left: time-averaged values at right wall for prescribed scalar at the walls.
Middle: RMS values concentration at left wall. Right: RMS values concentration
at right wall. Results for calculations using several boundary treatments (indicated
with stress for our variant, verz for Verzicco’s method and a standard method using
an iterative Poisson solver)

Finally, for the higher Re number case, a preliminary result for the case
of a prescribed scalar (remember, the scalar source is different this time) is
shown in Fig. 8. LES has been used, and a wall law has been used to calculate
the scalar flux and shear stress at the wall. Only results for the right wall are
shown, the time-averaged concentration and RMS of the concentration, only
our variant of the immersed boundary and the standard model. Differences
are visible but are possibly due to the shorter averaging time.

6 Conclusions

We wanted to see the effect of interpolation and nonzero penetration velocity
for immersed boundary methods. As expected, there are differences between
all three methods used (standard, Verzicco and stress method). From a com-
parison between the stress method (which uses standard boundary conditions)
and the standard method with iterative Poisson solver differences (resulting
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Fig. 8 Left: time-averaged values at right wall for prescribed scalar at the right
wall. Right: RMS values concentration at right wall. Results for calculations using
several boundary treatments (indicated with stress for our variant and standard for
a standard method using an iterative Poisson solver)

from just the non-zero penetration velocities) are very small for the case calcu-
lated. The comparison with Verzicco’s method, which assumes a linear profile,
indicate that the extra interpolations due to the assumption of a linear profile
have a bigger effect than the non-zero penetration velocities. This effect be-
comes more apparent when the flow profile is more curved. For the zero-flux
case, Verzicco’s method does well for the scalar for the region where yplus is
sufficiently small, but then, zero-flux for the scalar was also imposed exactly
for Verzicco’s case. For the case of prescribed scalar, differences are bigger, as
expected. For yplus sufficiently small, these differences too should disappear.

Summarising, the results indicate that with proper distance from the wall
one can use the virtual boundary method for concentration problems for flow
around square obstacles, the effect of the non-zero penetration velocity being
very small. Extension of our geometry to more complicated problems with
multiple obstacles is straightforward ([4]).
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Abstract. Filtering in Large Eddy Simulation (LES) is often only a formalism since
practically discretization of both the domain and operators is used as implicit grid-
filtering to the variables. In the present study, the LES equations are written in the
integral form around a Finite Volume (FV) Ω rather than in the differential form as
is more usual in Finite Differences (FD) and Spectral Methods (SM). Grid-filtering
is therefore associated to the use of an explicit local volume average, by the way of
surface flux integrals, and specific LES equations are here described. Moreover, since
the filtered pressure characterizes itself only as a Lagrange multiplier used to satisfy
the continuity constraint, projection methods are used for obtaining a divergence-
free velocity. The choice of the non-staggered collocation is often preferable since
is easily extendable on general geometries. However, the price to be paid in the
so-called Approximate Projection Methods, is that the discrete continuity equation
is satisfied only up to the magnitude of the local truncation error. Thus, the effects
of such source errors are analyzed in FD and FV-based LES of turbulent channel
flow. It will be shown that the FV formulation is much more efficient than FD in
controlling the errors.

Keywords: Large-eddy simulation, Finite volume methods, Explicit and implicit
filtering, Projection methods

1 Introduction

Several elements contribute to the effective quality of Large Eddy Simulation
(LES) of turbulence, e.g. see [1, 2, 3]. Specifically, they are the mathematical
and physical formulation, i.e. filtered equations and turbulence modelling of
the Sub-Grid Scales (SGS) terms, as well as the time and space discretization.
Of course, the choice of the computational grid is a further component that
contributes to succeed in LES.

As regards to numerical methods, there is an extensive literature indi-
cating Spectral Methods (SM) to be largely preferred in case of Cartesian
geometries as well as Finite Difference (FD) methods are preferred in more

J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, 213
c© Springer Science+Business Media B.V. 2008



214 A. Aprovitola, F.M. Denaro

general geometries. Someway, less attention seems focused on Finite Volume
(FV) approaches to LES. When using SM one clearly identifies the LES filter
as that one corresponding to the sharp cut-off acting at the Nyquist frequency
kc = π/h, associated to the truncated Fourier series defined on a grid of step
h. On the other hand, it is well known that the LES filter shape in FD-based
simulations is often only implicitly defined by the discretization and is not
exactly identifiable as, depending on the order of accuracy, the Fourier com-
ponents turn out to be differently resolved close to kc. Thus, some authors
addressed the use of explicit filtering (pre-filtering) for which one can exactly
identify the filter type and control the truncation errors [4, 5, 6]. However,
both FD and SM-based formulations are developed by discretizing the differ-
ential form of the Navier-Stokes (NS) equations. For FV-based formulations,
although the integral form is quite more complicated to be discretized than
the differential counterpart (according to [7] three levels of approximation
are required, interpolation, differentiation and integration), it appears to be
the most opportune since leading to solve discrete equation models, which
allow mass, momentum as well as any conservative quantity, to be a-priori
conserved, no matter of what the actual accuracy order is in effect. On the
contrary, it is well known that SM and FD methods do not automatically share
such property. This fact is particularly relevant since it is known that the dis-
crete conservation property ensures the correct wave velocity propagation as
it is required to reproduce the correct energy dynamic. As a matter of fact, the
additional appealing feature of FV-based approaches to LES is in the fact that
the local average represents a natural link with the smooth filtering, i.e., the
top-hat one. Note that FV discretizations of any accuracy order always drive
to approximate the top-hat filtered equations, e.g. see [8, 9, 10]. The fluxes
surface integrals must be really considered acting as volume filter in order for
the proper decomposition of resolved fluxes and congruent SGS modelling to
be supplied. Particularly, when a SGS dynamic modelling procedure is used,
the presence of the built-in FV filtering induced us to consider the extension
of the Germano identity, e.g. see [10]. Note that such peculiarities of FVs are
not often fully highlighted, even in recently published paper, e.g., see [6, 11].

Within this framework, solving the NS equations with the hypothesis of
fluid incompressibility leads to ensure the mass-conservation constraint∇·v =
0, everywhere and for all time. That makes the pressure acting only as a
Lagrangian multiplier, having no thermodynamic law. In order to alleviate the
computational effort of solving Lagrangian constrained system of equations,
the velocity and the pressure gradient vector fields are decoupled in the sense
provided by the Helmholtz-Hodge decomposition (HHD) theorem [12, 13],
leading to the class of the so-called Projection Methods, generally used both
in Direct Numerical Simulation (DNS) and in LES, no matter of which one
among SM, FD or FV methods is practically used.

Considering the complexity of discretizing integrals and derivatives and
computing the SGS terms, the use of projection methods on non-staggered
computational grids is preferable. However, when using second order
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discretizations on such grids, two general approaches arise. On a side, if the
discrete continuity equation has to be exactly satisfied then the discrete pres-
sure equation must be defined on a sparse stencil that, owing to the lack
of communication between neighbouring nodes (odd-even decoupling), could
produce non-physical oscillating solutions. On the other side, if a compact
stencil is constrained for obtaining a smooth pressure field, then the discrete
continuity constraint can not be satisfied up to machine-accuracy but it con-
verges towards a source term that is proportional to fourth-order derivatives of
the pressure field, multiplied by the time-step and the square of the grid step
sizes, e.g., see [7]. It is usual [14, 15] to speak in the first case of Exact Projec-
tion Methods (EPM) whereas one speaks of Approximate Projection Methods
(APM) in the latter case. Especially in LES, it is important to have control of
all the sources of numerical errors that can contaminate the large scales (quasi-
inviscid) dynamic and consequently the actions of any SGS model. Since there
is no kinetic energy equation resolved for incompressible omothermal flows,
it is possible that mass errors introduced by the APM enter indiscriminately
into the flow dynamic.

The aim of this paper is to illustrate the preliminary assessments of the
study on the mass-errors effect for FV-based LES compared to FD-based ones
when the APM is used. The classical test-case of the turbulent channel flow
at Reτ =590 is adopted. Furthermore, the results obtained by adopting a
recently developed improved discrete divergence-free method are illustrated.

2 Integral and Differential Formulation of the Filtered
Equations

In LES approach, the separation between large resolved scales and small un-
resolved ones is obtained via low-pass filtering. The spatial filtering operation
(here, time filtering is not considered) can be expressed as the convolution
product between the unfiltered point-wise field, say f , and some suitable fil-
ter function G, that is,

f(x, t) =
∫

G
(
x− x′; Δ

)
f(x′, t)dx′ ≡ G ∗ f (1)

Δ being the characteristic filter width. The Eq. (1) corresponds to have

f̂ (kw, t) = Ĝ (kw) f̂ (kw, t) in Fourier space, kw being the wavenumbers vec-
tor. Some classical filters G are, for example, the top-hat in physical space
and the sharp spectral cut-off, see [1, 2, 3]. The evolution equations for the
large scale field can be formally obtained by applying the filter (1) to each
term of the NS equations while supplying some SGS model for the consequent
unresolved terms. Then, for given boundary and initial conditions, a certain
discretization in time and space allows us updating the LES solution directly
in terms of the filtered fields.
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However, filtering the NS equation is often implicitly let to domain and
operators discretization, e.g. see [1, 4, 5, 6, 11]. The classical filtered equa-
tions such as those used in FD or SM approaches, assuming the commutation
property holds for filter and differentiation operations, write in differential
divergence form as

∇ · v = 0 (2)
∂v
∂t

+ ∇ · (vv) + ∇P = ∇ · (2ν∇sv)−∇ ·TD (3)

TD = vv − v v (4)

being P = p/ρ0, ν the kinematic viscosity and TD the exact unresolved sub-
grid tensor, subscript D denoting the differential formulation. It is worthwhile
remarking that we consider only the divergence form (3) of the momentum
equation, which is suitable for transformation to the integral one, no other
energy-preserving forms, such as the skew-symmetric one, being here consid-
ered. Without performing an explicit filtering, the real shape of the filtered
velocity v will depend on the implicit choice of the filter function G associated
to a certain discretization. Using SM, the LES filter is identified as that one
corresponding to the sharp cut-off acting at the Nyquist frequency kc = π/h.
Perhaps, in traditional FD-based LES solution, both the computational grid
and the discretization operators “implicitly” act as filtering to the NS equa-
tions and the filter shape depends on the type of discretizazion, as it has been
reviewed in [5]. Some authors [5, 6] considered, therefore, using an explicit
filtering on (3) in order to minimize the discretization error as well as to have
a known shape of the actual LES filter.

On the other hand, we will now address how FV-based LES is very attrac-
tive since it turns out to be someway in the between of implicit and explicit
filtering procedures. In fact, the NS equations written in the integral form
around a FV Ω, its measure being indicated by |Ω|, exactly accords with the
top-hat homogeneous filtering. That is, one writes

∫

∂Ω

n · v dS = 0, (5)

|Ω| ∂v
∂t

+
∫

∂Ω

n · (v v) dS +
∫

∂Ω

nP dS =
∫

∂Ω

n · (2ν∇sv) dS −
∫

∂Ω

n ·TI dS, (6)

TI = (vv − v v)− 2ν (∇sv −∇sv) , (7)

being v the divergence-free (
∫

∂Ω
n · v dS = 0 ⇒ ∇ · v = 0) volume averaged

velocity, n the outward oriented unit normal to the surface ∂Ω and TI the
exact unresolved sub-grid tensor, subscript I denoting the integral formula-
tion. It is worthwhile remarking that the adoption of the integral-based LES
formulation, leads to a very different definition of the exact unresolved ten-
sor as highlighted by comparing (4) and (7). In the integral form, the SGS
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term preserves a local character, the further filtering operation being involved
by the volume integration that in our case, by means of the Gauss theorem,
applies as surface integral [9, 10]. This appears to be a congruent way to effec-
tively use the conservative integral form rather than adopting an additional
volume filtering on the differential one as done in [6]. Furthermore, if the
commutation property between filter, derivatives and integrals does not hold,
then special filtering must be adopted for the differential form whilst only the
continuity equation contains a source term in the integral one, the momentum
equation being not changed. As final comment, the local truncation error of a
FV scheme always affects the shape of the effective filter but, while increasing
the accuracy of a FD method does not help us to exactly identify the actual
filter, increasing the accuracy of the fluxes reconstruction of a FV method
makes the effective filter tending to the theoretical expected top-hat one. Still
now, such distinctive issues between FV and FD-based LES, are not clearly
individuated, e.g. see [5, 6, 11].

Here, the closure of both the filtered equations (3) and (6) is obtained
by exploiting only the Bousinnesq sub-grid viscosity concept, even if mixed
models are however possible. Namely, the deviatoric part of the unresolved
tensors is classically modelled like an additional stress term with a point-wise
time-dependent eddy viscosity, hereafter denoted by νLES

TLES
∼= −2νLES∇sv. (8)

This way, a modified pressure variable π accounts for the contribution of
the isotropic part of the unresolved tensor. The eddy viscosity model (8) is
used both for FD and FV approaches, the surface integral in (6) acts as a
local filtering in FV while the divergence operator acts point-wisely in FD.
The dynamic procedure is then adopted in both formulations. The full details
of the dynamic procedure, developed for FV-based LES, are given in [10]. Let
us highlight that the goal of this study is not to get the best possible LES
solution but is focused to analyse the effects of the APM, for the FD and FV
formulation, with a given SGS model. Specifically, a lack in the divergence-free
constraint can be responsible of false energy evolution, as for example studied
in [16].

3 The Approximate Projection Method for the LES
Equations

According to the projection method idea, a velocity-pressure de-coupling
based on the HHD theorem of a vector field in a finite domain e.g., see [12, 13],
is introduced, allowing us to solve separately first the equation for an interme-
diate velocity field, say v∗, then projecting it on the sub-space of divergence-
free functions. It is known that second order discretization on staggered grids
ensures non-spurious modes in the solution, nevertheless the non-staggered
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collocation (or cell-centred grid) is often preferable since is much more feasi-
ble and easily extendable to general geometries and higher accuracy. However,
it is well known that second-order accurate projection methods on cell-centred
grids substantially belong to the class of either EPM or APM, e.g. see [14, 15].
In the EPM, the continuity constraint can be satisfied to machine-accuracy
but the discrete divergence D and gradient G (second order accurate but
centred on large stencil, e.g., 2h) operators produce the discrete elliptic equa-
tion LH (φ) ≡ DG (φ) = D · v∗ which is affected by lack of communication
between neighbouring nodes (odd-even decoupling), producing spurious oscil-
lating solutions. In fact, as can be shown by analyzing the number of zeros of
the Fourier symbol, both the operators D and LH have an eight-dimension
null-space. Conversely, in the APM one does not demand that the discrete
system matches the condition for being exactly a projection. The divergence
DAPM and gradient GAPM operators (second order accurate but centred
on the smallest mesh size h) allow us obtaining a compact Laplace operator
L ≡ DAPMGAPM that is only an approximation of the operator LH , L can
be shown to have the null-space of dimension one, corresponding only to the
constant mode. The APM-based elliptic equation is L (φ) = D · v∗, the RHS
being exactly the same of the EPM, but the price to be paid is that the dis-
crete continuity equation is satisfied only up to the magnitude of the local
truncation error [7, 14, 15]. The presence of such error at fixed grid measure
influences the transfer of kinetic energy for FD or FV methods in different
way.

We use the Adams-Bashforth time integration of the convective and hori-
zontal (x and z directions) diffusive terms along with the eddy viscosity model.
The vertical diffusive term (y direction) is discretized by the implicit Crank-
Nicolson scheme. A small time-step ensures that the second order accuracy in
time does not add a supplementary time-filtering. The solution of the inter-
mediate non-solenoidal velocity field is performed by solving the space-time
discrete filtered momentum equation (3) or (6) after that the pressure term
is disregarded [17]. Depending on the discretization, second order FD and FV
methods can or not drive to solve the same algebraic equations, e.g. see [7,
18, 19]. Hence, the discretizations for both FD and FV are now addressed.

3.1 Finite Difference Formulation

Starting from Eq. (3) along with the SGS model (8), the discrete prediction
equation for the intermediate non-solenoidal velocity ṽ∗ writes, at a generic
grid point i,j,k, as[
I − νΔt

2
∂̃
∂y

(
∂̃
∂y

)]
ṽ∗ =

[
I + νΔt

2
∂̃
∂y

(
∂̃
∂y

)]
ṽn −Δt∇̃ ·

[
3
2

(
ṽnṽn + T̃n

LES

)

−3ν
2

(
i ∂̃
∂x + k ∂̃

∂z

)
ṽn − ṽn−1ṽn−1

2 − T̃n−1
LES

2 + ν
2

(
i ∂̃
∂x + k ∂̃

∂z

)
ṽn−1

]
(9)

being I the identity operator, i and k the unit vectors along x and z direc-
tions, respectively. According to notation in [5], the symbol ṽ has been here
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used instead of the v in order to highlight that the implicit grid-filtering has
undefined shape in FD, not necessarily corresponding to the top-hat filtering.
It is worthwhile remarking that Eq. (9) is based on the divergence form of
the differential equation (3), sometime being such form referred as to “finite-
volume”, e.g. [11]. Often, FD approaches adopts the skew-symmetric form
that ensures the discrete conservation and good stability properties. Here, we
are interested only in the divergence form which is suitable to be compared
to the integral one by means of Gauss theorem. In Eq. (9), the tilde symbol
on the derivative indicates the use of classical discrete operators such as

∂̃
∂x

∣∣∣
ijk

ũ2 = ũ2
i+1,jk−ũ2

i−1,jk

2Δx ; ∂̃
∂x

(
∂̃
∂x

)∣∣∣
ijk

ũ = ũi+1,jk−2ũijk+ũi−1,jk

Δx2 . (10)

It is worthwhile noticing that for the first derivative in (10) one can assess the

exact correspondence to the one-dimensional top-hat filtering, that is ∂̃f
∂x =

1
2Δx

∫ x+Δx

x−Δx
∂f
∂x dx. Conversely, it is easy to show that the discretization of the

second derivative in (10) implies a double 1D filtering.

3.2 Finite Volume Formulation

Starting from Eq. (6) along with the SGS model (8), the discrete prediction
equation for the intermediate non-solenoidal velocity ṽ

∗
, at a generic FV

centre-node i,j,k, write as

[
I − νΔt

2Δy

(
∂̃
∂y

∣∣∣
CS+

p

− ∂̃
∂y

∣∣∣
CS−

p

)]
ṽ
∗

=
[
I + νΔt

2Δy

(
∂̃
∂y

∣∣∣
CS+

p

− ∂̃
∂y

∣∣∣
CS−

p

)]
ṽ

n

−Δt
2

{
3

[
1

|Ω(x)|
∑
p
ΔSpn ·

(
ṽṽ + T̃LES

)n

CSp

− ν
(
D̃1 + D̃3

)
ṽ

n

]

− 1
|Ω(x)|

∑
p
ΔSpn ·

(
ṽṽ + T̃LES

)n−1

CSp

+ ν
(
D̃1 + D̃3

)
ṽ

n−1

}
(11)

having used the mean value-based discrete integrals of convective and SGS
fluxes [7] (trapezoidal rule can be also used) and having indicated with ΔSp

the measure of the p-th FV flux-surface being CSp its node-centre. Further-
more, CS±

p denotes the centre of the two horizontal faces across the position
yj and D̃1,3 ( ) indicates the integro-differential second order discrete operator
of the diffusive fluxes along x and z directions, e.g., see [18, 19]. Note that
the tilde symbol on the variables is now used in conjunction with the hat
symbol in order to indicate that FV-based implicit filtering produces always
a numerical approximation of the top-hat filtering. Differently from the FD
formulation, since on a non-staggered grid the values on the face-centres CSp

must be reconstructed from the node-centre i,j,k, in order for the FV dis-
cretization to be completely defined the interpolation of the convective fluxes
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has to be still defined [7]. Reconstruction is here performed at second order
of accuracy that is a linear polynomial approximation is adopted. However,
following a classical non-staggered formulation with linear interpolation, one
would get the same FD discretization type reported in (10), no matter of the
fact that the FV approach was used [18, 19], thus, a distinguishably strategy
will be adopted as follows.

3.3 Flux Reconstruction Based on the APM Step

Let us first recalling that, according to the APM formulation [14, 15, 18,
19], one relaxes the divergence constraint and constructs an approximate
projector, say it simply P . After applying P on the intermediate velocity,
one has P (ṽ∗) = ṽn+1

S and P
(
ṽ
∗)

= ṽ
n+1

S for FD and FV-based LES,
respectively. The subscript S denotes that the fact that APM-based velocity
introduces a local source mass. Practically, one solves the elliptic equation

L
(
φ̃n+1

C

)
= D · ṽ∗ and L

(
φ̃

n+1

C

)
= D · ṽ∗

for FD and FV, respectively, asso-

ciated to proper Neumann boundary conditions that provide a unique solution
(apart a constant) for the scalar potential field. Note the RHS of the elliptic
equation is equivalently obtained by using a linear interpolation with a more
compact divergence operator DAPM , see [14, 15, 18, 19]. In FV formulation
it is well-suited defining an additional set of six normal-to-face velocities on
each FV surface Sp, say them ¯̃un+1

f i±1/2,j,k,
¯̃vn+1
f i,j±1/2,k,

¯̃wn+1
f i,j,k±1/2 for x, y and

z components, respectively. Such velocities are staggered-like as one can see
for example for the x-component

¯̃un+1
f i±1/2,j,k =

¯̃u∗
i±1,j,k + ¯̃u∗

i,j,k

2
∓

φ̃
n+1

i±1,j,k − φ̃
n+1

i,j,k

Δx
. (12)

are computable under an exact projection. In fact, if one constructs the dis-
crete divergence constraint DAPM · ¯̃v

n+1
f = 0, then one easily sees that the

Poisson equation L

(
φ̃

n+1

C

)
= D · ṽ∗

is recovered. Therefore, this set of aux-

iliary staggered normal-to-face velocities is intrinsically divergence-free. Such
velocities are then really used for computing ṽ

∗
by means of the convective

fluxes reconstruction needed in (11), as for example for the component

1
|Ωijk|

z+
k∫

z−
k

dζ

y+
j∫

y−
j

(
u2
∣∣
x+

i

− u2
∣∣
x−

i

)
dη ∼= 1

Δx

[(
ũf i+1/2,j,k

)2

−
(
ũf i−1/2,j,k

)2
]

(13)
allowing us computing (11). Finally, once a potential field has been obtained
from the Poisson problem, one can directly update the node-centre velocity

simply computing ṽn+1
S = ṽ∗ − Gφ̃n+1

C and ṽ
n+1

S = ṽ
∗ − Gφ̃

n+1

C for FD



FV-Based Approximate Projection Methods for LES 221

and FV formulations, respectively. This way, although the same APM-based
elliptic equation is used and the final velocities ṽn+1

S and ṽ
n+1

S are not exactly
divergence-free, the mass error differently spreads in them, depending on the
used FD or FV-based method.

Besides, an originally developed procedure, called Double Projection Me-
thod (DPM), see [18, 19], exploits the HHD theorem for deriving an additional
potential velocity field that, while correcting the FV-based velocity ṽ

n+1

S ,
enforces the discrete continuity. This is accomplished by solving for a second
elliptic equation obtained by prescribing that an additional discrete gradient
of a scalar function ensures the discrete continuity, that is ṽ

n+1
= ṽ

n+1

S −
Δt Gfn+1

C . The additional computational effort of the second elliptic solver is
justified by the fact that one should use both a refined grid and a small time
step to reduce the continuity errors of the APM. The DPM procedure will be
also tested for analysing the errors present in LES.

4 Turbulent Channel Flow Simulation

A preliminary analysis of the performances of the APM and DMP formula-
tions [18, 19] in simulating the problem of the plane turbulent channel flow is
now reported. The DNS database [20] is considered for comparisons. For the
sake of completeness, solutions were obtained both for LES supplied by the
dynamical eddy-viscosity modelling procedure [10] as well as without any SGS
modelling. According to the FV methodology, the test filtering is chosen to be
a horizontal top-hat filter and the SGS coefficients are taken point-wise, no
plane-averaged being performed [10]. By using a clipping, the SGS viscosity
was set to have only positive values but this is a very invasive criterion and
best choices are possible [10]. The computational grid consists of 48× 64× 64
grid points, non-uniformly distributed only in vertical direction. The initial
condition on the velocity corresponds to a laminar parabolic profile with a su-
perimposed random fluctuation while a constant pressure gradient is supplied
as forcing term. The horizontal component of the kinetic energy evolutions
at Reτ =180 are reported in Fig. 1a for the FV and FD-based solutions with
and without SGS models. Noteworthy, the FD run without model was never
stable, no matter of the time-step used while stable computations (with both
APM and DPM) are obtained with the FV-based no-model. The FD-based
LES solution supplied by the eddy viscosity modelling was stable.

Effects of the eddy viscosity modelling are clear seen in terms of increas-
ing in the energy level, according to an increase of the flow rate. In Fig. 1b
the ensemble averaged stream-wise velocity profiles U+ are reported in semi-
logarithmic scales versus the wall coordinate Y+. The FV no-model (APM
and DPM) simulations well accord to DNS apart for the centre of the channel
where turbulence is poorly resolved and it appears a deviation from the loga-
rithmic. On the other hand, the effects of the eddy viscosity modelling appear
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a) b)

d)c)

Fig. 1 Reτ =180: (a) horizontal kinetic energy evolution; (b) velocity profiles in
wall units; Reτ =590: (c) horizontal kinetic energy evolution; (d) velocity profiles
in wall units

in the higher levels of the velocity profiles, FD being slightly lesser. It is also
evident a different slope from the theoretical law. This effect is substantially
supposed due to the SGS modelling, since it is present both in FD and FV
solutions, but it is worthwhile noticing that in LES context the analytical
form of the law of the wall is not necessarily invariant to a filtering operation
since the friction velocity of filtered data can be different from the unfiltered
ones. Therefore, we assume the LES mean profiles can be only qualitatively
compared to DNS, further analysis being required to produce congruent mean
profiles. A further set of simulations was performed at higher Reynolds num-
ber, that is Reτ =590, on the same computational grid. In Fig. 1c the horizon-
tal component of the kinetic energy evolutions are reported for the case with
and without SGS modelling. Solutions without SGS modelling reached ear-
lier an energy equilibrium. Again, the FD-based solution was unstable. These
results confirm the effect of the implicit built-in top-hat filtering associated
to the integral formulation. The means velocity profiles illustrated in Fig. 1d
highlight the higher values for the no-model simulations that is due only to
filtering effects. The LES supplied by the SGS modelling increase the velocity
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intensity, and a slope, slightly departing from the logarithmic law, is obtained
someway better for the DPM case.

As brief concluding remarks, the better quality of second order FV formu-
lations over FD based on divergence form seems indubitable. In fact, despite
of the fact that the FD equations were written in conservative form, stable
and quite accurate no-model solutions appeared only for the integral formula-
tion. The action on the kinetic energy evolution appears not controlled by the
FD method as unconditional numerical instability occurred. The built-in im-
plicit top-hat filtering in FV formulation appears effective. The action of the
eddy-viscosity dynamic model is someway excessive and must be still tuned by
choosing a proper clipping criterion. Of course, other SGS modelling such as
the deconvolution-based ones can also provide improvement in the solutions.
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Reliability of Large-Eddy Simulation of
Nonpremixed Turbulent Flames: Scalar
Dissipation Rate Modeling and 3D-Boundary
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Abstract. The intricate coupling between the numerical discretization of scalar
field transport and the modeling of unresolved sub-grid scale fluctuations of chem-
ical species is discussed. It is shown how the closures for the sub-grid scale scalar
dissipation rate combine modeling of small scale diffusion with two error terms mea-
suring the lack of accuracy in the transport of scalar field fluctuations energy. Then,
the need of accounting for the three-dimensional character of turbulent flows at
boundaries of computational domains is illustrated.

Keywords: Quality, Reliability, Large-eddy simulation, Boundary conditions,
Flames, Chemistry

1 Introduction

Large-Eddy Simulation (LES) of nonpremixed turbulent flames relies on four
major ingredients: (i) the Sub-Grid Scale (SGS) modeling of unresolved fluxes
of momentum and mass, (ii) the description of chemistry and micro-mixing,
(iii) the numerics, and (iv) the boundary conditions. Weakness in one of these
ingredients can easily jeopardize turbulent flame LES quality. Two points re-
lated to (ii), (iii) and (iv) are considered in this paper. The chemistry and its
tabulation are first discussed. The need to transport with accuracy the energy
of scalar fields is expressed, along with related implications for subgrid-scale
modeling of scalar dissipation rates and micro-mixing. Finally, the impor-
tance of boundary conditions is illustrated with LES involving a novel three-
dimensional Navier Stokes Characteristic Boundary Conditions approach.

J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, 227
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2 Error in Scalar Energy Transport: Impact on Scalar
Variance and Dissipation Rate Modeling

Auto-ignition, flame stabilization, recirculating products, which may include
intermediate species, and the prediction of some pollutants cannot be ad-
dressed without including detailed chemistry in sub-grid scale modeling. The
difficulty is twofold: hydrocarbon chemistry involves numerous species and
elementary reactions, which cannot all be considered in the LES solution,
and, the strongly non-linear character of chemistry is coupled with the sub-
grid scale fluctuations of species and temperature, which are not resolved by
the grid. This lack of resolution results from the very localized heat release
profiles through reaction zones and flames. Typically, under atmospheric pres-
sure, flame thickness is of the order of a tenth of a millimeter with interme-
diate radical species evolving over even thinner layers inside reaction zones.
When compared to combustion chambers of the order of tens of centimeters
or even of the order of meters, flames evolve over too short distances to be
resolved simultaneously with the eddies controlling large-scale mixing, at least
with actual computer capabilities. The tabulation of chemical species behav-
ior prior to LES is one of available options that was investigated to downsize
combustion chemistry to make it compatible with flow solvers. This table is
then filtered to be used in LES. For instance, presumed-PDF may be used
to filter the chemical response, as it is done in the PCM (Presumed Condi-
tional Moment) approach [22, 5, 6]. In nonpremixed systems, the filtering of
the chemical table is calibrated from SGS energy of scalars, as the mixture
fraction and the progress of reaction.

Yv = Ỹ Y − Ỹ Ỹ denotes the SGS energy of the reactive scalar Y. The
balance equations for Ỹ and Yv may be written:

∂ρỸ

∂t
+∇ · ρũỸ = −τY +∇ ·

(
ρD ∇Ỹ

)
+ ˜̇ωY (1)

∂ρYv

∂t
+∇ · ρũYv = −∇ ·

(
τY 2 − 2Ỹ τY

)
+∇ · (ρD ∇Yv)

− 2τY · ∇Ỹ − 2sχY
+ 2

(
Ỹ ω̇Y − Ỹ ˜̇ωY

)
, (2)

where where τY = ρuY − ρũỸ and τY 2 = ρuY 2 − ρũỸ 2 are SGS transport.
sχ = ρD|∇Y |2 − ρD|∇Ỹ |2 is the SGS scalar dissipation rate. ω̇Y denotes the
chemical source and usual notations are otherwise adopted.

The modeling of sχ is a very sensitive point, it impacts on the shape of the
presumed probability density function and modifying its expression, or any
adjustable parameter entering this expression, strongly modifies flame and
flow responses. This is illustrated in Fig. 1 showing

〈
ỸCO

〉
, the time average

of the filtered CO mass fraction in LES of a lifted jet flame, which is performed
with two different expressions of the scalar dissipation rate. The first is the
usual linear relaxation hypothesis:
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Fig. 1 Radial profiles of CO mass fraction at the lifted turbulent flame base. Symbol:
measurements [4] Solid-line: LES with sχY given by Eq. (3). Dash-Line: LES with
sχY given by Eq. (4)

sχY
= ρ

Yv

Δ2/νT
(3)

the second is a novel closure proposed by Domingo et al. [6] accounting for
the fact that burning favors strong gradients of Y , thereby increasing SGS
mixing when the unmixedness S = Yv/Ỹ (1− Ỹ ) is large [3]:

sχY
= (1− S)ρ

Yv

Δ2/νT
+ S

(
−ρD|∇Ỹ |2 + Y ω̇Y − Y Eqω̇Y /2

)
, (4)

where Δ is the filter size, νT the SGS viscosity and Y Eq the value of Y under
chemical equilibrium condition, which may depend on position because of
non-uniform equivalence ratio. It is discussed in [6] that Eq. (4) is exact when
S → 1 and also when S → 0 for a quasi-Gaussian SGS probability density
function of Y . Modifying the scalar dissipation rate modeling has a strong
impact on the shape of the flame base and on the radial spreading of the
burnt gases; then, the prediction of intermediate species as carbon monoxide
(CO) is also strongly affected by the modeling of sχY

(Fig. 1). Since the
turbulent flame simulation is that sensitive to the modeling of the SGS scalar
dissipation rate, it is legitimate to wonder whether the choice of the expression
for sχc

can be influenced by direct or indirect interactions with the numerics.
Here the simulations where performed using a fourth-order finite volume skew-
symmetric-like scheme [8] for the spatial derivatives, a discretization ensuring
a correct transport of the energy of the velocity field. The mesh is composed of
2,150,000 nodes with a characteristic mesh size h that varies 0.3 mm < h < 2.5
mm. Its spanwise and streamwise lengths are 28D×28D and 90D, respectively.
The filtered structure function model [7] is used to express the unknown SGS
transport by velocity fluctuations.

Yv is the difference between the filtered energy of the scalar and the energy
of the resolved scalar field. The transport of Yv by the large eddies should be
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Fig. 2 θ = (Ỹ )2 solving its balance equation (Eq. 7) versus (Ỹ )2 obtained from the

square of the resolved Ỹ field (Eq. 1), lifted jet-flame [6]

done so that it is coherent with the transport of the resolved energy (Ỹ )2.
This can be quantified on LES meshes by two error terms Eu

Y and ED
Y defined

as:

Eu
Y =

1
2
ρũ · ∇Ỹ 2 − ρũỸ · ∇Ỹ (5)

ED
Y =

1
2
∇ ·

(
ρD∗∇Ỹ 2

)
− Ỹ∇ ·

(
ρD∗∇Ỹ

)
− ρD∗|∇Ỹ |2, (6)

where ρ is the density, u the velocity and D∗ = D+DT the sum of the molec-
ular and SGS diffusion coefficient of the scalar Y . Both Eu

Y and ED
Y vanishes

when the numerical discretization conserves scalar energy. These error terms
are a direct measure of the departure that may be expected when comparing
θ = (Ỹ )2 obtained from the solving of its balance equation,1

∂ρθ

∂t
+∇ · ρũθ = −∇ · (2Ỹ τY ) +∇ · (ρD ∇θ)

+ 2τY · ∇Ỹ − 2ρD|∇Ỹ |2 + 2˜̇ωY Ỹ (7)

1 Hereafter θ always denotes (Ỹ )2 computed from Eq. (7).
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with (Ỹ )2 deduced from simply taking the square of Ỹ , obtained from Eq. (1).
Such a comparison is shown in Fig. 2 for a passive scalar (ω̇Y = 0), where
Eu

Y = ED
Y = 0 would correspond to a unity slope line. A non-negligible devi-

ation from this line is observed, which illustrates the lack of precision in the
transport of scalar energy. In actual simulations, the error terms Eu

Y and ED
Y

are combined with the SGS closure for the scalar dissipation rate, which is in
fact a model for the term,

s∗χ = sχ + (Eu
Y − ED

Y ) (8)

leading to different flame results when modifying the numerics, or the mesh,
with an obvious impact on LES reliability.

For a given modeling of sχ, the difference ΔY 2 = (Ỹ )2 − θ informs on the
possible variations of Yv that may be attributed to the combined action of Eu

Y

and ED
Y . The unmixedness factor S, defined above and varying between zero

and unity, is constructed for Yv (Fig. 3(a)) and Yv + |ΔY 2| (Fig. 3(b)). SY is
one of the control parameters of filtered chemistry [6] and Fig. 3 shows that
it is strongly sensitive to error in scalar energy transport.

The development and the use of energy conservative schemes for veloc-
ity [12], but also for scalar fields on unstructured mesh thus appears as a
major issue of turbulent combustion LES.

3 Three-Dimensional Boundary Conditions
for Increasing LES Reliability

Turbulent flames and acoustics are coupled in many combustion systems and,
when it is the case, a fully compressible flow solver is needed to accurately
simulate mixing and reaction. In such LES, the boundary conditions treatment
is usually grounded on relations valid only when the flow is orthogonal to the
face boundary. The Navier-Stokes equations are written in terms acoustic wave
amplitudes, then one-dimensional characteristic wave equations, coupled with
a specific boundary condition (inlet, outlet, wall), are used to determine these
waves amplitude, which are finally used in the Navier-Stokes equations to
advance the system in time at the boundary [15].

Turbulent flows are not likely to behave as one-dimensional when entering
or leaving computational domains. The net result is the generation of flow
perturbations at boundaries, which may strongly reduce LES accuracy. These
perturbations may be damped by adding artificial dissipation when approach-
ing the boundaries, or the acoustic response of the face boundary may also
be tuned via target solutions and relaxation parameters. More or less justi-
fied ad-hoc procedures are therefore introduced. Unfortunately, these ad-hoc
procedures need to be modified when changing the flow parameters of a given
configuration. Then, it becomes quite difficult to really compare different sim-
ulations of the same problem, since the boundary treatment has been adjusted
for every set of flow parameters, reducing LES reliability.
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(a)

(b)

Fig. 3 (a): S = Yv/(Ỹ (1 − Ỹ )), (b): (Yv + |ΔY 2|)/(Ỹ (1 − Ỹ )) versus Ỹ
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In this context, numerous developments may be found in the literature
concerning boundary conditions and their applications [17, 20, 21, 15, 1, 9,
19, 13, 14, 18, 23, 16, 2]. This section discusses recent developments in bound-
ary conditions treatment by Lodato et al. [11], in which the three-dimensional
character of turbulent flows at boundaries is accounted for. This is done by
including in the analysis convection and pressure gradients developing in the
directions of the boundary plane when computing the amplitudes of the acous-
tic waves. Because these additional transverse terms are coupled with char-
acteristic waves traveling along directions orthogonal to adjacent boundaries,
on edges and corners, three-dimensional characteristic coupled waves must be
studied. Moreover, when edges or corners result from intersection of planes
having different types of boundary conditions (inlet, outlet, wall), compati-
bility conditions must be carefully imposed to preserve the well-posedness of
the problem.

The full description of three-dimensional Navier-Stokes Characteristic
Boundary Conditions (3D-NSCBC) is out of the scope of this paper, details
may be found in [11], only the main lines are given along with some results
to illustrate the potential of such boundary treatment and its impact on LES
reliability.

Characteristic waves are represented by their amplitude time variations
Li, Mi and Ni corresponding to the three physical-space directions with the
subscript ‘i’ referring to the i-th characteristic wave (continuity, momentum,
energy and scalar). Some waves leave the domain, while others enter from
outside, the incoming ones must be specified to close the boundary problem.
Usually, only the waves corresponding to the direction normal to the boundary
are considered, for instance only the Li for a boundary that is orthogonal
to the first direction. In 3D-NSCBC, the waves in the three directions are
included in the derivation of boundary conditions. At a corner, the system
verified by the wave amplitudes reads:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
=Wρ(Li,Mi,Ni)

∂uk

∂t
=Wuk

(Li,Mi,Ni)

∂p

∂t
=Wp(Li,Mi,Ni)

∂Z

∂t
=WZ(Li,Mi,Ni),

(9)

where ρ is the density uk the velocity component in the direction k, Z is a
scalar andWm denotes functions of wave amplitudes associated to the bound-
ary conditions that is prescribed in terms of ∂ρ/∂t, ∂uk/∂t, ∂p/∂t and ∂Z/∂t.
Prescribing time evolution of these primitive variables at the boundary, pro-
vides a way to estimate Li, Mi and Ni from Eq. (9), so that they can be
used to close the full set of Navier-Stokes equation at the boundaries. In
Eq. (9), when the boundary is normal to the direction of the waves Li, the
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(a) (b)

Fig. 4 Vortex test: pressure contours as the vortex crosses the boundary (Ma =
0.00575). Standard NSCBC non-reflecting outflow (a); 3D-NSCBC non-reflecting
outflow (b)

combination ofMi and Ni represents the transverse contribution that is usu-
ally neglected. For every boundary, a linear system must be combined with
compatibility conditions in case of inlet/wall, outlet/wall, inlet/outlet to get
the unknown incoming wave amplitudes.

The importance of transverse terms at boundaries is illustrated in Fig. 4
showing the pressure contour when a vortex is traveling through an exit.
Unphysical noise is generated by usual non-reflecting outflow, while the novel
3D-NSCBC treatment preserves the correct pressure distribution when the
vorticity field leaves the domain.

The propagation of a spherical pressure wave through edges and corners
is a stringent test of three-dimensional boundary conditions. Spurious noise
is easily generated when waves crosses boundaries, leading to solutions as the
one observed in Fig. 5(a). Pressure patterns are generated that are driven by
the edges and the corners; the quality of LES can be more than offset by such
flow behavior at boundaries. The use of a proper three-dimensional boundary
conditions strongly improves the physical behavior of the flow Fig. 5(b): the
pressure waves leave the domain preserving their spherical character.

Inlet and outlet of LES (or DNS) computational domains are known to play
a key role on the behavior of the interior solution. Moving outflow planes away
from the most interesting part of the solution is the most adopted approach
to avoid pollution from exit boundaries, this may be accompanied by mesh
relaxation or even a so-called ‘sponge domain’ adding artificial viscosity to
damp any extraneous perturbation added to the flow at the boundary. Figure 6
shows LES of a jet having a boundary intentionally located in a zone where
turbulence is still fully developed. The computational domain is a box of
dimensions 14D × 5D × 5D with D the diameter, the mesh is composed of
200 × 80 × 80 grid points. The boundary treatment that includes the three-
dimensional characteristic waves allows for evacuating the vortex tubes and
other turbulent structures without noise or flow deformation Fig. 6(b).
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(a) (b)

(c) (d)

Fig. 5 Spherical pressure wave test: pressure iso-surfaces evolution (iso-value
p/pref = 1000). (a–b): Standard-NSCBC, (d–f): 3D-NSCBC non-reflecting outflows

(a) (b)

Fig. 6 Free round-jet with 3D-NSCBC. (a): Q-criterion = 0.5 contours (center),
pressure (left) and passive scalar (right) distributions over orthogonal axial planes
(t = 157.1D/Ub). (b): detail of Q = 0.5 contours at the exit boundary
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4 Concluding Remarks

Large-Eddy Simulation is highly sensitive to numerical errors and, in many
occasions, sub-grid scale modeling is unfortunately entangled with these er-
rors [10]. Sub-grid scale modeling of chemical species fluctuations, based on a
measure of the sub-grid scale variance, is directly related with the error intro-
duced when transporting the energy of scalar fields. Accordingly, the modeling
of sub-grid scale scalar dissipation rate should not be addressed without dis-
cussing also the numerical discretization.

Fully compressible simulations of the Navier-Stokes equations are highly
sensitive to boundary conditions. Any specific treatment that calibrate the
three-dimensional character of turbulence at boundaries using one-dimensional
prototype flows is likely to be deficient when vorticity crosses the boundary.
To overcome this inherent difficulty of DNS and LES of compressible flows,
the treatment of acoustic waves at boundaries can be expressed in its three-
dimensional form, to evacuate turbulence with almost no spurious flow dis-
tortion.
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2 Defense Security Systems Technology, The Swedish Defense Research Agency –
FOI, SE 147 25 Tumba, Stockholm, Sweden

Abstract. This paper aims at reviewing some important aspects of Large Eddy
Simulation (LES) as applied to engineering applications. In particular we focus on
aspects relevant to quality management and validation and verification procedures.
After outlining the LES formalism and the numerical methods considered appropri-
ate for engineering applications we discuss particular features of LES that require
specific treatment or attention in the validation and verification process. This is
illustrated in more detail when different flows are introduced and discussed. Ap-
plications are selected from different fields, and are of different complexity, being
supported by reference data, to demonstrate a variety of modeling aspects in engi-
neering. Finally, we connect the various aspects of validation and verification with
the technical aspects of engineering LES.

1 Introduction

Large Eddy Simulation (LES) is fast becoming a liable alternative for engi-
neering applications, despite its higher cost compared to contemporary meth-
ods. The reason is the capability of LES to resolve the large-scale unsteady
flow physics, such as coherent structure dynamics, directly on the mesh. This
simplifies the modeling of mixing, combustion and multi-phase processes,
where inclusion of small scales noticeably improves the quality of the com-
putations, and flow induced noise and vibrations, where small-scale pressure
fluctuations are of primary interest. LES should also provide higher accuracy,
reliability and versatility compared to the current industry standard in Com-
putational Fluid Dynamics (CFD), being Reynolds Averaged Navier-Stokes
(RANS) models, in which only the mean flow is solved for. However, this
comes at the price of increased computational cost, sensitivity of problem
set-up and solution procedures.

LES of engineering applications, typically outside of the well-validated
regime, calls for careful assessment of the quality of the results, and the com-
plications are many and of different character. These include grid refinement

J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, 239
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effects, impact of geometric simplifications and imperfections, boundary con-
ditions, physical modeling, etc. The characterization and management of these
important issues calls for a closer dialog both between CFD scientists and en-
gineers, and between the CFD community and Experimental Fluid Dynamics
(EFD) scientists and engineers.

In this paper, we aim at raising different issues in quality assessment from
our portfolio of problems, ranging from canonical flows to challenging en-
gineering problems. Our aim here is not to give a complete picture of the
problems that may arise, nor to give a procedure to evaluate the reliability
of the results. The disposition of the paper is as follows: We start by giving
some background on LES, subgrid modeling and numerical methods. We then
discuss the concept of verification and validation in CFD and relate this to
complications in applying these ideas to engineering cases in general and LES
in particular. Finally, we present a suite of LES results and relate some of the
issues in validation to these practical computations.

2 The Large Eddy Simulation Formalism

The starting point of this study is the equations of motions describing in-
compressible, compressible or reactive flows, which can be comprehensively
formulated as,

∂t(u) +∇ · F(u,u) = f(u), (1)

where u = [ρ, ρv, ρE, ρYi]T is the vector of dependent variables, where ρ is
the density, v the velocity, E = e+ 1

2v
2 the total energy, e the internal energy

and Yi the species mass fractions. In addition, F = F(u,u) = [ρv, ρv ⊗ v +
pI − S, ρvE + pv − Sv − h, ρvYi − ji]T is the flux vector and f = f(u) =
[0, ρf , ρσ, ẇi]T the source term. Following [1, 2, 3, 4] we assume the fluid to be
linear viscous (S = (λ + 2

3μ)(∇ · v)I + 2μDD) with Fourier heat conduction
(h = κ∇T ), Fickian diffusion (ji = Di∇Yi) and Arrhenius chemistry (ẇi =
Mi[Pijẇj ]), and satisfying the classical thermal and caloric equations of state
(p = ρRT and e = h − p/ρ =

∫
cvdT ). Moreover, f is the specific body force

and σ the non-mechanical energy source. R is the (composition dependent) gas
constant, Mi the species molar mass, μ the viscosity, λ+ 2

3μ the bulk viscosity,
κ the thermal diffusivity, h the enthalpy, cv the specific heat (at constant
volume), Di the species diffusivity, Pij the Stoichiometric matrix, and ẇj the
jth reaction rate. From a computational view, it may be convenient to express
(1) in terms of convective and diffusive fluxes, FC = [ρv, ρv⊗ v, ρvE, ρvYi]T

and FD = [0,−pI + S,−pv + Sv + h, ji]T , such that ∂t(u) +∇ · FC(u,u) =
∇ · FD(u,u) + f(u).

Most flows are turbulent, and the classical picture of turbulence starts from
a sequence of bifurcations in a laminar flow, each of which renders more eddies
of smaller and smaller scales. The kinetic energy is found to be of the form
E(k) = Ckε

2/3k−5/3f(k!K), where the length scale 1/k corresponds to the
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wavenumber k, f is a damping function (for high k) and !K is the Kolmogorov
length scale, at which the smallest turbulent eddies dissipate into heat. Most of
the kinetic energy is contained within the (large) integral scales, !I , from which
energy is transported by the cascade process down to the Kolmogorov scales.
In most flows, the large-scale flow form coherent structures, containing most of
the energy, typically spanning a range of scales from !I to !T , where !T is the
(intermediate) Taylor scale. These coherent structures consist of relatively
closely bounded vortex filaments that move collectively in the flow, being
responsible for most of the large-scale mixing and dynamics. Dimensional
analysis suggest that !K ≈ (ν3/ε)1/4 and !I/!T ≈ Re

1/2
I , where ε is the

dissipation, [5], and by assuming equilibrium between production, P ∝ v3
I/!I ,

and dissipation it follows that !I/!K ≈ Re
3/4
I . These relations suggest that a

DNS will require NDNS ≈ (!I/!K)3 ≈ Re
9/4
I cells whereas a LES would only

require NLES ≈ (!I/!T )3 ≈ Re
3/2
I cells. Hence, LES is cheaper than DNS,

although still expensive compared to RANS.
The motivation behind the development of LES was to develop a modeling

framework that is more accurate than RANS and less expensive than DNS. At
present there exists two competing types of LES: explicit LES, [1, 2, 3, 6, 7],
and implicit LES, [8, 9, 10]. Both approaches are based on filtering (1), either
explicitly or implicitly, but differ primarily in the way that the unresolved
(subgrid) flow physics is modeled. In explicit LES, physics based models are
used to model these processes, [1, 7, 11], whereas in implicit LES the leading
order truncation error of specific numerical algorithms are used to emulate
these physical processes [10, 12].

In order to separate between resolved and subgrid parts, u is decomposed
as u = ū + u′, where ū = G(x,Δ) ∗ u is the resolved part and G the filter
kernel with filter width Δ. By applying this filtering operation to the governing
Equation (1) we obtain,

∂t(ū) +∇ · F(ū, ū) = −∇ ·B(u, ū) + f(ū) + σ(u, ū), (2)

where ∇ ·B(u, ū) = ∇ · F(u,u)−∇ · F(ū, ū) = [∇ · F(u,u)−∇ · F(ū, ū)] +
[∇ · F(u,u) − ∇ · F(u,u)] is the unresolved transport term and σ(u, ū) =
f(u)− f(ū) is the unresolved source term, both of which require closure mod-
eling to take the subgrid physics into account. The unresolved transport term,
∇ ·B, consists of the subgrid term, ∇ ·F(u,u)−∇ ·F(ū, ū), representing the
subgrid physics, and the commutation error term, ∇ · F(u,u) − ∇ · F(u,u),
representing the fact the differentiation and filtering do not generally com-
mute, [13]. In practice, however, we typically neglect the commutation error
term, and take∇·B ≈ ∇·[F(u,u)−F(ū, ū)]. Furthermore, the flux function F
can be split into its convective and diffusive parts (FD and FC , respectively)
such that ∇ · B ≈ ∇ · [FC(u,u) − FC(ū, ū)] + ∇ · [FD(u,u) − FD(ū, ū)].
The convective part is well-known, e.g. [1, 2, 7], whereas both the diffusive
part and the source term, σ(u, ū), are less familiar since they mainly appear
in compressible, reactive and multi-phase LES. For example, our inability to
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model σ has contributed to the plethora of turbulent combustion models, [14],
available and a better treatment of these terms would be most welcome.

In order to close (2) and to incorporate the effects of the subgrid physics we
must provide closure models for ∇ ·B, or rather B, and σ. In most LES only
the convective contribution to ∇·B is considered, i.e. ∇·B ≈ ∇· [FC(u,u)−
FC(ū, ū)], based on which most subgrid models are developed. Although an
abundance of subgrid models exist for incompressible LES, e.g. [1], not many
of these are further developed to also handle compressible or reactive LES.
Examplifying with models for incompressible flow, we have the One Equation
Eddy Viscosity (OEEVM) model, [15], the Smagorinsky (SMG) model, [16,
17], the Structure Function Model (SFM), [18], and the Mixed Model (MM),
[19, 20]. The former three are of the form BEV ≈ −2μk∇v̄|sym, whereas the
MM is of the form B ≈ FC(v̄, v̄)−FC(v̄, v̄)+BEV , in which μk is the subgrid
viscosity which is to be modeled differently in the OEEVM, SMG and SFM.
The inevitable model coefficients are obtained either by integrating the energy
spectra, [1], or through a dynamic procedure, [17]. The subgrid source terms,
σ, are often more complicated to handle since they are usually related to other
types of physical processes such as reactions, [21]. For reacting flows we may
either use flamelet models, [21], or finite rate chemistry models, [14, 21]. In
the former, the species (or Yi) equations are replaced by equations for the
mixture fraction, z, and the reaction coordinate, c, in which the reaction is
represented by the turbulent flame speed, St, as parameterized by the laminar
flame speed, S0

u, and the flame wrinkling, Ξ = St/S
0
u. In the latter, the filtered

source terms in the Yi-equations are modeled using different models such as the
Partially Stirred Reactor (PaSR), [14], model and the Thickened Flame Model
(TFM), [22]. This also requires the specification of a reaction mechanism and
associated rate parameters. The choice of combustion model is an open issue
in current reactive flow LES, and a more systematic treatment is welcome.

Close to walls, the flow becomes dominated by vortices with a character-
istic length and spacing much smaller than those of the free flow. Simulating
wall bounded flows with LES is thus a challenge since either we need to resolve
also the near wall flow structures (wall-resolved LES ) or we have to model
the near wall flow (wall-modeled LES ), [1]. Wall-modeled LES is at present
the only alternative for LES of practical applications, and therefore specific
treatment of the near wall flow is needed, [23]. One approach, although not
recommended, is to use damping functions to reduce the subgrid viscosity
close to the wall, [1], whereas a better approach is to employ dedicated sub-
grid near wall models. Some of these wall models, e.g. [24, 25], adjust the
velocity at the solid wall to enforce the local near wall flow to satisfy the loga-
rithmic law of the wall, whereas other wall models, e.g. [26], simply adjust the
subgrid viscosity to achieve the same. As will be described later, the choice of
near wall modeling may be very important to the overall flow behavior.
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3 Numerical Methods

Here we limit the discussion to unstructured Finite Volume Methods (FVM)
since they are most appropriate for engineering LES. Unstructured grids typ-
ically allow greater flexibility in generating and adapting grids, but at the
expense of increased storage needs. Central to FVM’s is that the values of
u are represented by control volume averages, uP , representing an implicit
filtering of (2). Discrete FVM approximations can be derived by means of
Reynolds transport theorem so that (2) becomes,

∂t(ūP ) + 1
δVP

∑
f

[
FC

f − FD
f + Bf

]
= fP + σP , (3)

where FC
f = FC(ūf , ūf )dAf , etc., is the discrete fluxes and dAf the area-

element of integration. The semi-discretized equations (3) needs to be inte-
grated in time, and rules must be prescribed for how to reconstruct the con-
vective, diffusive and subgrid fluxes, FC

f , FD
f and Bf , to close (3). For high-

speed flows, explicit time integration schemes are most appropriate, e.g. based
on a Runge-Kutta method, [27], whereas for low-speed flows a semi-implicit
multi-step method, [28], is most often used. The flux-reconstruction is crucial,
and for the convective fluxes linear or cubic interpolation schemes are recom-
mended, but for engineering applications, monotone or TVD schemes may be
necessary. For the remaining fluxes, linear or cubic interpolation schemes are
usually applied, and the time-step should be limited by a Courant number of
less than about 0.5.

One way to estimate the accuracy of the numerical method is to
estimate the leading order truncation error using the Modified Equations
Approach (MEA), [29]. Briefly stated, given the differential equations of
interest and the numerical method to be used, the MAE provides the dif-
ferential equations solved numerically. These modified differential equations
will thus include the original differential equations together with further terms
related to the truncation error of the numerical method. One key aspect of
the MEA compared with other approaches is that the truncation error will
include whatever non-linearity is related to either the differential equation or
the numerical method. Expressions for the leading order truncation of the
aforementioned FVM discretization can be found in [12] and [30], and for a
2nd order linear scheme for the momentum equation, the truncation error is
T = 1

8 [ρv̄ ⊗ ((∇2v̄)(d ⊗ d))]sym + . . ., where d is the grid spacing, revealing
the nature of the scheme and how it may interact with an explicit subgrid
model.
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4 Error and Uncertainty Quantification Through
Validation and Verification

The procedure used to measure the quality and reliability of a simulation
is often labeled validation and verification (V&V). This could be envisaged
to give error bars on the simulation results similar to what is standard in
EFD, although terminology and principles differ between CFD and EFD. The
ideas discussed here are largely inspired by the AIAA guidelines, [31], and
we aim at being consistent with that terminology. We also note that in some
fields, standards to perform V&V have been developed, at least for stationary
RANS, [32]. Many aspects in V&V become however much more complicated
for unsteady simulations and LES.

4.1 Verification

Verification deals with assessing that the governing model problem is solved
correctly, and thus to quantify the numerical error and to show that the code
and the method have appropriate convergence properties. This is mainly a
mathematics and computer science issue that can be carried out by series
expansion of the error followed by estimating the convergence through a sys-
tematic grid refinement. This is neither practical nor easily interpreted for LES
of engineering cases due to the usually large baseline grids, grid refinement
issues and lack of reference data. Another potentially interesting method is
the Method of Manufactured Solutions (MMS), [33], but it is not obvious that
this approach can be used for 3D unsteady flow problems. We note though
that although neither of these methods seems suitable to verify a certain cal-
culation, they can be used to verify the code, implementation of different
discretization schemes etc. on a simple set-up. Alternatively, the MEA could
be considered one way to estimate the numerical error. However, this process
is ambiguous considering the implicit filtering in LES. Another complication
is how to verify transient calculations, where two realizations do not need
to be identical. We thus seem forced to compare statistical moments of the
solution, but then face the problem that correct statistics may be obtained
despite an error in the computation.

4.2 Validation

Validation deals with assessing that the correct model problem is solved, and
thus to estimate errors and uncertainties arising from approximating reality.
This is primarily a physics and engineering issue that involves the choice of the
model equations, boundary conditions, geometrical approximations etc. The
validation process typically involves comparing the computed results with
experimental data. In accordance with [31], we try to distinguish between
errors, whose effect can be estimated and are due to known approximations,
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and uncertainties, that are potential sources of error due to unknown effects of
modeling. The common way to proceed with validation is to attempt to isolate
different modeling effects in unit flow cases and for these cases compare with
high accuracy results from DNS or experiments. By computing several of these
unit flows one can build confidence in the models and approximations used.
Validation is thus a continuously ongoing and developing process. The problem
when approaching engineering applications is then that all approximations
cannot be isolated and tested separately.

4.3 Issues in V&V for LES of Engineering Flows

Setting up an LES computation (or any flow simulation) of an engineering
application involves a series of sensitive modeling and approximation steps,
subject to the V&V procedure. The most obvious ones are the always present
choice of model equations and discretization of these as well as the com-
putational domain. We will here indicate some particularly difficult issues,
primarily influencing the validation stage(s).

It needs to be pointed out that in LES, the distinction between verifica-
tion and validation demands a separation between filtering and discretization
that is seldom done in practice. This is even more complicated for Implicit
LES (ILES), where the subgrid model error and the discretization error is the
same. However, this also suggests that the subgrid model error is, in principle,
accessible in LES by varying the filter width independently of the grid resolu-
tion (or in ILES by grid convergence). This is in contrast to RANS where the
modeling always constitutes an uncertainty. Disregarding the obvious prob-
lems with computational resources to perform such studies, comparison and
interpretation of results using different filter width may not be straightfor-
ward and additional convergence results for different statistical moments of
the regularized equations may be needed.

The level of geometrical details that can be included should depend on the
number of grid points we can afford and the filter width. In practical LES, the
filter width is usually defined implicitly by the control volume size and the
filtering of the geometry is not considered other than through the practical
aspects in generating the mesh. Most often though, no-slip conditions or wall-
modeling are applied which may not be correct for a filtered geometry. This
has been discussed in e.g. [1], but no consensus among practitioners has been
reached. Hence, effects of surface roughness such as bolts, welds or fillets, and
of turbulence triggers in laboratory studies are often neglected, [34].

Effects that stem from the surroundings, whose modeling is denoted su-
pergrid modeling, [35], include the size of the computational domain and the
definition of far-field boundary conditions. Defining an appropriate size of the
domain is arbitrary for external flows, and for internal flows the same holds
for the placement of inlets and outlets. For external flows, the boundaries are
often set ‘sufficiently far away’, but this statement is neither obvious nor suf-
ficient for most cases. In laboratory set-ups, the always-present wind tunnel
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or towing-tank walls influence the flow e.g. through blocking, whereas real
flows may experience density stratification, conjugate heat transfer effects,
fluid structure interaction effects etc. The inflow turbulence characterization
and modeling, [36, 37], requires more attention and is currently considered a
more important part of the LES model than the subgrid model. For reacting
or buoyant flows, the thermal properties of the boundary may also have a
strong impact, [38]. Other issues to mention includes non-linear thermal and
caloric equations of state, as well as transport properties.

A careful statistical analysis of the computational results should be per-
formed. This concerns the sampling of uncorrelated moments for steady flows,
and ensemble averaging from repeated flow realizations for unsteady flows. At
present, this is not always straightforward due primarily to limited computa-
tional resources, but as they increase, we expect improved statistics that can
be better compared to measurement data. For unsteady flow, such as maneu-
vering simulations, the cost of forming sufficient statistical moments is still
daunting.

A necessity for validation is to limit the differences in the experimental
and computational set-up. The details of and uncertainty from the experi-
mental geometry and boundary conditions typically reported in a scientific
paper are enough to assess and interpret the results, but may lack key details
for the computational set-up. It may be alignment issues of the model or the
measurement equipment in a wind tunnel, discrepancies in measured refer-
ence values, insulation properties of walls, etc. To make progress, increased
interaction between the EFD and CFD communities are necessary, and new
validation cases should be developed jointly. There is also a need for improved
interaction between theorititians and practitioners in LES in order to study
and understand the impact of e.g. filtering, commutation errors and wall treat-
ment. Ideally, it also involves modeling of multi-physics processes, where the
actual physics is poorly understood or validated, or may be very difficult to
tackle experimentally.

5 From Canonical to Engineering Flows

Next, we illustrate these issues using a range of flows – from canonical flows,
where the set-up is well-defined and the analysis is straightforward, to flows
approaching engineering complexity, where the problems of mimicking the
case is considerable and the assessment of resolution and modeling is not
easy. Experimental data is provided when available,

5.1 Academic Flows

We first consider the canonical flow associated with fully developed turbu-
lent channel flows at Re-numbers from Reτ=395 to 1800, [26, 39], all com-
puted on the same 603 grid to investigate the capability of handling the near
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(a) (b)

Fig. 1 Fully developed turbulent channel flow at Reτ=395 to 1800; (a) time-average
axial velocity in inner scaling and (b) axial rms-fluctuations in outer scaling

wall flow, being critical in many practical applications of LES. Comparison
is made with DNS data, [40], at Reτ=395 and 590 and experimental data,
[41], at Reτ=1800. In Fig. 1 we present comparisons of the time-averaged
axial velocity, 〈v̄x〉, and its rms fluctuations, vrms

x =
√
〈v̄x − 〈v̄x〉〉2. From

Fig. 1 we find that at the lowest Reτ number, i.e. at the highest resolution,
the differences between the different models are virtually insignificant, but as
the relative resolution decreases the impact of the modeling becomes impor-
tant. At Reτ=590 both Detached Eddy Simulation (DES) and LES, using the
OEEVM together with the van-Driest damping, (OEEVM+vD) overpredict
both 〈v̄x〉 and vrms

x . At Reτ=1800 this is even more pronounced with the
DES resulting in poor agreement with the measurement data. Improved DES
predictions can be obtained if y+ < 1, as for Reτ=395, due to the built-in
constraints of the Spalart-Allmares model. This, however, may be difficult to
comply with in complex geometries. We observe that the MM together with
the wall-model (MM+WM) yields improved results over the OEEVM together
with the wall-model (OEEVM+WM) as a consequence of the assimilation of
the scale similarity term in the LES model, [20].

Next, we consider the flow over a surface mounted hill, [42], in a wind
tunnel at a Re=130,000, that has been studied by several groups, e.g. [43].
Persson et al. [44], performed a systematic comparison between RANS, DES
and LES, studying also the effects of inlet conditions, subgrid models and
grid resolution. The key features of the flow are the boundary layer flow over
the hill and the free separation on the lee-side of the hill. Several unsteady
intertwined vortices are found behind the hill, in particular near the lower
wall, as illustrated in Fig. 2. Persson et al. [44], report good agreement between
predicted and measured pressure coefficient, CP , for all LES, and in particular
for the LES performed in a domain with an extended approach flow section. A
somewhat too long recirculation bubble was found for most LES, whereas the
RANS showed a far too long recirculation bubble, cf. [43]. DES with different
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(a) (b)

(c) (d)

Fig. 2 Flow over a surface mounted hill; (a) instantaneous and (b) time-averaged
flow field, (c) streamwise and (d) transvers velocities in the wake

inflow turbulence levels, referred to as high and low, was found to result
in very different flow representations: The DES with low inflow turbulence
behaves as an LES whereas the DES with high inflow turbulence behaves as
a RANS. In Fig. 2(c), (d) we present comparisons of the time-averaged axial
and spanwise velocity components, 〈v̄1〉 and 〈v̄3〉, respectively. Best agreement
is found for the wall-modeled LES (LES MM+WM and LES OEEVM+WM)
closely followed by DES low. Both RANS and DES high fall short in predicting
the mean flow structures, clearly revealing the weaknesses of these models for
flows with strong curvature, and the sensitivity of the supergrid viscosity
modeling in DES to the inflow conditions.

5.2 DARPA SubOff AFF1 Bare Hull Body

At the borderline between validation and marine applications, we present
also the flow past the DARPA SubOff AFF1 body. The geometry consists of
a torpedo-like axisymmetric hull having a cylindrical mid-section making up
about half of the hull length, [45, 46]. Simulations have been performed with
RANS, DES and LES on grids between 1.5 and 6.0 million cells, at a hull
length Re number of 12 × 106, [47], whereas the experimental data are from
wind tunnel measurements at David Taylor Model Basin, [46]. This is a chal-
lenging flow, especially for LES due to the developing boundary layer over the
mid-section and the high Re number, making wall-resolved LES too costly,
thus necessitating wall-modeled LES. For the pressure and skin-friction (not
shown), good agreement is found for all models at all resolutions. In particular,
we notice the good skin-friction predictions obtained with LES, [47], showing
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(a)

(b) (c)

Fig. 3 Results for the Darpa Suboff AFF1; (a) flow visualization, (b) axial velocity,
and (c) axial rms-fluctuations. The data is taken along five cuts at the tapered stern

the capability of the wall-model in predicting the wall shear stress, τw. The
wall-model in itself is simple, but in combination with an accurately predicted
outer flow, that includes large-scale dynamics, it allows the appropriate inter-
actions between the inner and outer layers in the near wall region. Concern-
ing the time-averaged velocity profiles, 〈v̄x〉, and their rms-fluctuations, vrms

x ,
Fig. 3(b), (c), there are however noticeable differences between the model-
ing approaches with RANS performing less accurately than LES and DES.
As seen in Fig. 3(c), RANS underpredicts vrms

x , but discrepancies are evi-
dent also in 〈v̄x〉. We further note that also the coarse grid LES gives good
agreement with measurement data, signifying only a weak grid dependency of
the first and second order statistical moments of the velocity, although more
structures are present in the fine grid LES.

5.3 Supersonic Jet Flows

With more stringent regulations on aircraft noise the aerospace industry is in-
vesting in CFD to calculate jet noise. To illustrate supersonic jet flow physics
and how this can be predicted by RANS and LES, results based on the Seiner
et al. [48], experiments of a Ma 2 jet of diameter D=91.44 mm will be dis-
cussed. The computational models originate at the nozzle orifice, at which
top-hat profiles are prescribed for ρ, vx, T , k and ε, thereby excluding the
nozzle orifice boundary layer dynamics that may affect the jet boundary layer
dynamics. At all other boundaries, wave-transmissive conditions are used to
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allow pressure and entropy waves to exit the domain without reflections. For
LES, grids of 1.10, 3.72 and 8.80 million cells are used, whereas for RANS
only the coarse grid is used. The difference between RANS and LES, and the
influence of resolution in LES is illustrated in Fig. 4:(a).

The coarse and fine grid LES show similar flow structures, but with the
fine grid LES revealing much more details. Comparing the time-averaged axial
velocity, 〈ṽx〉, and the rms-fluctuations, vrms

x , in Fig. 4:(b), show that the fine
and medium grid LES agree well with the measurement data whereas the
coarse grid LES and the RANS show discrepancies in the potential core and
mixing regions. The number of shock-diamonds, as shown by the peaks and
valleys in the pressure (see insert in Fig. 4:(a)), velocity and temperature (see
Fig. 4:(b)) also differs between the simulations. The medium and fine grid LES
predicts the same number of shock-diamonds, suggesting that these grids are
sufficiently fine to capture the shock reflection angles in the oscillating jet
boundary. RANS and coarse grid LES both fail to predict these key flow
features. The influence of the resolution is even more pronounced in the vrms

x -
profiles of Fig. 4:(b). Furthermore, we compare jet centerline temperature
profiles, 〈T̃ 〉, supporting the conjecture that only the medium and fine grid
LES are capable of matching the experimental data. The oblique pressure
waves (see insert in Fig. 4:(a)), radiating from a region at the end of the
potential core, illustrate the radiating sound waves.

(a) (b)

Fig. 4 Round supersonic jet flows. (a) Contours of the axial velocity and isosurfaces
of the second invariant of the velocity gradient from RANS (top), coarse LES (mid-
dle) and fine LES (bottom). Insert shows the instantaneous pressure distribution.
(b) Axial profiles of time-averaged axial velocity (top) and temperature (bottom)
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(a)

(b)

(c)

(d)

Fig. 5 Annular gas turbine combustor. (a) Schematic of the model combustor, (b)
iso-surfaces of the fuel mass fraction, centerplane axial velocity contours, combus-
tor exit temperature contours and confinement wall pressure contours. (c) Time-
averaged profiles of the axial velocity and temperature from different cases, and
(d) frequency contents 1.25D behind each burner in the laboratory and annular
combustors

5.4 Annular Multi-Burner Gas Turbine Combustor

Annular gas turbine combustors are used for aeropropulsion, power genera-
tion, and marine and land-based propulsion. Although they have an advantage
over can combustors in low NOx levels they often suffer from combustion oscil-
lations that can result in flashback, blowout and mechanical vibrations. Such
oscillations are hard to predict at the design stage and correcting actions can
be costly. At present, industry is relying on thermoacoustic models, [49], em-
ploying RANS for a single burner configuration to predict the mean flame,
in order to predict the eigenfrequencies of the combustor. This approach ne-
glects much of the non-linear physics, and improved models are most wanted.
Compressible reactive LES with finite rate chemistry have the potential to
predict the required features although at a high computational cost.



252 C. Fureby, R.E. Bensow

We here present such results for a model 18 burner annular combustor,
developed from the laboratory GE LM6000 combustor, [50, 51], used in other
studies, [52, 53]. The geometry is outlined in Fig. 5:(a), and here a CH4/air
mixture at an equivalence ratio of 0.56 is burnt at 6.18 × 105 Pa and 644 K
at a Re=320,000 and a swirl number of 0.56. Here, the 18 DACRS premix-
ers are modeled by a swirling air/fuel jet, [51], injected through round inlets
with diameter D. Hexahedral grids with 10 million cells are used, together
with wave-transmissive outlet boundary conditions, and adiabatic, no-slip,
wall boundary conditions. A seven species, three-step reaction scheme is em-
ployed to model the CH4 oxidation and the CO and NOx emission formation,
with Arrhenius coefficients optimized to match the laminar flame speed and
temperatures of the Gri-Mech 3.0 in lean to rich premixed flames.

In Fig. 5:(b) we show a perspective view of the combustor in terms of
an iso-surface of the fuel mass fraction, representing the flame, center-plane
contours of the axial velocity, outlet contours of the temperature, outer wall
contours of the pressure and six flames shown head on. Each flame takes the
shape of a wrenched expanding tube that fold back on itself when approach-
ing the combustor centerline to collapse in a tongue twisted by the helicoidal
vortex. The flames are stabilized by the combined effect of swirl and recir-
culation ahead of the flames and between the flames and the dump plane.
Individual flames are different and the outer (semi-transparent) combustor
wall is colored by pressure, revealing alternating high and low pressures. In
Fig. 5(c), (d) we show time-averaged centerline profiles of the axial velocity
〈ṽx〉 and the temperature 〈T̃ 〉, as well as the pressure Power Spectral Den-
sity (PSD) at points 1.20D behind each burner in both the laboratory and
annular combustors. The LES results agree well with the data, [50], and with
other LES results, [52, 53]. The annular combustor LES suggests different 〈ṽx〉
and 〈T̃ 〉 profiles compared to the single combustor due to the modified dy-
namics of the helicoidal vortex systems. The differences are more pronounced
when viewing the PSD. In particular we find a 2.50 kHz mode in the annular
combustor that is absent in the laboratory combustor. Comparing with the
confinement pressure distribution and thermoacoustic model results we find
that this mode is a spinning mode due to the coupling between the helicoidal
vortex systems.

5.5 Submarine During Maneuver

Understanding unsteady separating flows past maneuvering submarines is im-
portant to guarantee the operational safety of the ships and their crews, and
to reduce the signatures. Separating flows around the hull, sail, and rudders
are responsible for the poorly understood forces and moments that can be
detrimental to performance. Even if test data exists it is recognized that sta-
bility derivatives from model tests, incorporated into the equations of motion,
fail to predict some features of transient maneuvers. Thus, the interest in ma-
neuvering simulations is increasing and for reasons of reliability together with
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Fig. 6 Results for submarine maneuvering in terms of streamlines and skin friction
on the hull. In (b) we show a comparison of skin friction profiles at x/L=0.686 at
different yaw angles.

the potential of more accurately predicting noise and vibrations, the use of
LES is attractive, in spite of its higher cost compared with RANS.

We here show results from a side-slip maneuver for the DARPA Suboff
AFF2 configuration, [45, 46], as experimentally studied at Virginia Tech, [54,
55], for quasi-steady and unsteady maneuvers. To simulate this maneuver, we
carry out LES with an Arbitrary Lagrangian Eulerian (ALE) formulation,
[56], in which the motion is included into the equations of motion through a
mesh velocity. Wall-modeled LES is used with grids of 4.3 and 6.3 million cells,
graded towards the hull, resulting in wall normal resolution of about y+ = 30.
Two different runs are performed, starting from different initial times, to
estimate the variability of the flow, [56]. The experimental data, measured at
Re=5.5×106, was aimed at measuring the separation lines from local minima
of the skin-friction, Cf , and hence the error in Cf may be substantial.

The main flow structures are the horseshoe vortex, the development of
cross-flow vortices, and the sail-wake. As the horseshoe vortex evolves, it in-
teracts with the hull-boundary layer to create a complex flow with intermittent
separation at the stern. During the maneuver, the leeward horseshoe vortex leg
turns towards the side of the hull and interacts with the cross-flow vortex that
has begun to develop. Continuing the maneuver, this vortex system detaches
from the hull, creating a complex vortex system at the stern. The windward
horseshoe vortex leg is not affected by the cross-flow in the early stages of the
maneuver but later merges with the sail wake. At later stages, several sec-
ondary vortices emerge and a very complex system of interacting structures is
formed. In the sail wake, high frequency fluctuations are detected and for high
angles of attack, separation starts to develop on the leeward side of the sail.
Figure 6:(b) compares the time evolution of Cf between the steady and un-
steady measurement data and LES results. Differences are detected between
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the steady and unsteady data, and the LES appears much closer to the un-
steady experimental data, although including some features that resemble the
steady experimental data. The two LES runs are similar, but it is evident that
both the location and shape of the structures varies from one run to another,
illustrating the sensitivity to initial conditions and therefore also to similar
effects caused by unsteady boundary condition effects.

6 Discussion

In this section we connect the issues discussed in Sect. 4 to the cases of Sect. 5.
The discussion will be brief and is by no means complete but will indicate the
kind of questions that will arise when trying to assess the quality of a LES of
an engineering application.

Physical process modeling is probably the single most important issue,
particularly for engineering applications, and covers a wide range of topics.
Examples include the modeling of the stress tensor in a non-newtonian fluid,
the equations of state in high speed and reactive flows, the reaction mecha-
nisms and reaction rates in reactive flows, phase change processes (evapora-
tion, condensation and melting) in multi-phase flows, conjugate heat transfer,
thermal radiation, acoustics, relative motion and fluid structure interactions.
These processes often occur together in engineering applications, which puts
exceptional requirements on the code development and on the V&V proce-
dure. Both the gas turbine combustor and the submarine maneuvering are
examples of such cases, and must be proceeded by a series of increasingly
complex studies, discussed in [14, 26, 39, 53, 57].

Flow modeling concerns mainly the LES closure modeling and is connected
to the physical process modeling in terms of the complexity of the flow physics
that requires modeling. For incompressible Newtonian fluids this reduces to
modeling the subgrid stress tensor, the sensitivity of which is illustrated in
Figs. 1, 2 and 3, for different flows. These results, together with other similar
studies, imply that the details of the subgrid model are of lesser importance,
provided that the grid and the handling of the near wall flow are appropri-
ate. On the other hand, as illustrated in Fig. 1, the importance of the near
wall treatment is crucial. The differences between DES and LES are further
illustrated in Figs. 2 and 3, providing guidance for more complex flows. In
this respect, DES is peculiar since it depends on the (rather arbitrary) choice
of inflow data, resulting in LES-like or RANS-like profiles, being in good or
marginally good agreement with the reference data, respectively.

The sensitivity to the grid resolution is a classical verification issue that is
historically connected to grid refinement or verification in the RANS context.
However, for LES it is somewhat different as discussed earlier. For engineering
LES, the sensitivity to grid resolution is often difficult to investigate since the
baseline grids are usually large or even very large in order to accommodate
all details of the geometries involved. Additional complications arise from the
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use of unstructured (or hybrid) grids or Adaptive Mesh Refinement (AMR)
sometimes required to capture shocks and other discontinuities. The channel
flow results suggest that the near wall region is important, and that damping
function models and DES does not work unless y+ is less than about 3, whereas
the wall-model, [24, 25, 26], has a wider range of applicability. This is also
illustrated by the results for the more challenging Darpa SubOff AFF1 case.
On the other hand, the influence of the grid is also evident for the supersonic
jet, where grids with typical spacings of Δ and 1.5Δ produce accurate results,
whereas a spacing of 2Δ fails. All three grids, however, result in energy spectra
with a distinctive k−5/3 sub-range. For this case, however, the transitional flow
around the end of the potential core may require a higher resolution.

The reason to use wall-modeled LES is that the resolution requirements be-
come prohibitively large as the wall is approached. However, most engineering
(and some laboratory) surfaces are rough to some extent, either deliberately
be means of turbulence triggers (e.g. trip wires, struts or zig-zag tape) aiming
at emulating full scale conditions or per-se through welds, unfinished surfaces,
small technical details, or by fouling. Some studies, e.g. [34], indicate that the
detailed design of such triggers creates different boundary layer structures.
This is an important issue that has not yet been fully recognized, and we
believe that for some flows this overwhelms that of ordinary subgrid modeling
since it controls transition, separation and viscous drag. These effects cannot
often be resolved, and thus has to be parametrically modeled, preferably as a
part of the wall-models, which can be extended to also handle surface rough-
ness. The wall model used here is simple, but still gives good agreement with
reference data for channel flows and for flow around different bodies. This is
in spite of the lack of trip-wires on the Darpa AFF1 and AFF2 hulls and a
steady inflow for the 3D hill. Also the shear stress analysis of the maneuvering
submarine gives good results with measured shear stress.

Supergrid modeling, i.e. the influence of the surroundings (wind tunnel,
laboratory facility or the open sea) is as already mentioned very important,
e.g. [35]. For example, the flows around the 3D hill and the Darpa SubOff
AFF1 hull are affected by the turbulence within the wind tunnels, and par-
ticularly by the fact that the stern of the Darpa SubOff AFF1 hull exits the
tunnel inside of an anechoic chamber. Also for the maneuvering submarine,
where slotted walls are used in the wind tunnel, it is difficult to estimate the
effect of the walls in the measurements and the boundaries in the computa-
tion. For the gas turbine combustor, the swirlers, the guide vanes at the end of
the combustion chamber, and the turbine package after the combustor are not
included, and instead models have to be employed. Such models lack informa-
tion about the small-scale turbulence and the acoustic impedance of the real
device. To properly analyze such flows systematic variations of velocity pro-
files, impedances, etc., are therefore required. Also for the supersonic jet there
are issues of supergrid modeling, such as the shape of the velocity profiles and
the turbulence. By including the nozzle, these effects can be minimized, but to
a considerably higher cost. But even then, we are likely to experience the same
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problem again, since we can not included the complete engine. Where to stop
including features is thus subject to several very complicated approximations.

The final issue in validation is to compare correctly with available data.
This involves e.g. handling normalization factors, location of measurement
probes and understanding experimental data handling and errors. This is often
well documented, but being in contact with the experimentalists simplifies
this matter, and is sometimes the only way to obtain critical information,
some of which not considered important when the experiment was performed.
Another aspect is to consider is the statistical treatment of the LES data. To
be consistent with experimental practice, uncorrelated averages should be used
instead of running averages that we believe is common in the LES community.
When comparing transient results, like the maneuvering submarine, one is
also faced with the problem of comparing a single realization of the flow with
an ensemble-averaged measurement. In this case, ten maneuvers have been
performed without reporting the standard deviation. Estimating the accuracy
of the LES in this case is troublesome, to say the least, even if comparisons
are made with measured skin friction data.

To summarize, we emphasize the challenges and opportunities involved
in quality assessment in LES in particular, and in CFD in general. In order
to be useful for engineering, the reliability of LES needs to be proven by a
combination of theoretical work on quality and grid resolution indicators and
practical experiences. A close collaboration between EFD and CFD is crucial
to study and validate effects from approximations and modeling.

Acknowledgements

The authors wish to acknowledge the financial support from the Swedish
Armed Forces and the Swedish Defence Material Agency. The authors also
wishes to thank N. Alin, J. Tegnér, T. Huuva, U. Svennberg, and M. Liefendahl.
All simulations in this article were performed using the OpenFoam (www.
openFoam.com) platform.

References

1. Sagaut P (2001) Large Eddy Simulation for Incompressible Flows. Springer,
Berlin Heidelberg, New York

2. Pope, SB (2000) Turbulent Flows. Cambridge University Press
3. Lumley JL (Ed.) (1992) Wither Turbulence? Turbulence at the Crossroads,

Lecture Notes in Physics 357:344. Springer, Berlin Heidelberg, New York
4. Wilcox, DC (1993) Turbulence Modeling for CFD. DCW Industries
5. Frisch U (1995) Turbulence. Cambridge University Press
6. Ferziger JH, Leslie DC (1979) AIAA 79-1441
7. Lesieur M, Metais O (1996) Annu Rev Fluid Mech 28:45
8. Boris JP, Grinstein FF, Oran ES, Kolbe RL (1992) Fluid Dyn Res 10:199



LES at Work 257

9. Grinstein FF, Fureby C (2004) Computing in Science and Engineering,
March/April issue, p 36

10. Grinstein FF, Margolin L, Rider B (2007) Implicit Large Eddy Simulation:
Computing Turbulent Fluid Dynamics. Cambridge University Press

11. Bochev P, Christon M, Collis S, Lehoucq R, Shadid J, Slepoy A, Wagner G
(2004) SAND Report SAND2004-2871

12. Drikakis D, Fureby C, Grinstein FF, Liefendahl M (2007) ILES with limiting
algorithms. In: Grinstein FF, Margolin L, Rider B (eds) Implicit Large Eddy
Simulation: Computing Turbulent Fluid Dynamics, Cambridge University Press

13. Fureby C, Tabor, G (1997) J Theor Fluid Dyn 9:85
14. Fureby C (2007) AIAA Paper No 2007-1413
15. Schumann U (1975) J Comput Phys 18:376
16. Smagorinsky J (1963) Month Wea Rev 91:91
17. Germano M, Piomelli U, Moin P, Cabot WH (1994) Phys Fluids A 3:1760
18. Ducros F, Comte P, Lesieur M (1996) J Fluid Mech 326:1
19. Bardina J, Ferziger JH, Reynolds WC (1980) AIAA Paper 80-1357
20. Bensow RE, Fureby C (2007) J Turbul, to appear
21. Poinsot T, Veynante D (2001) Theoretical and Numerical Combustion, Edwards
22. Colin O, Ducros F, Veynante D, Poinsot T (2000) Phys Fluids 12:1843
23. Piomelli U, Balares E (2002) Annu Rev Fluid Mech 34:349
24. Piomelli U, Moin P, Ferziger JH, Kim J (1989) Phys Fluids A 1:1061
25. Werner A, Wengle H (1991) In: Proceeedings 8th Int Symp on Turb Shear

Flows, Munich, Germany, p. 155
26. Fureby C (2007) Ercoftac Bulletin, Marsh Issue
27. Gottlieb S, Shu C-W (1998) Math Comput 67:73
28. Hirsch C (1999) Numerical Computation of Internal and External Flows. John

Wiley & Sons
29. Hirt CW (1968) J Comput Phys 2:339
30. Grinstein FF, Fureby C (2007) J Fluids Engng 129:1514
31. AIAA, (1998) AIAA-G-077-1998
32. ITTC (2005) Recommended Procedures and Guidelines, Section 7.5-03
33. Roachee PJ (1998) Verification and Validation in Computational Science and

Engineering, Hermosa Publishers
34. Werner S, (2006) Computational Hydrodynamics Applied to an America’s Cup

Class Kiel. PhD Thesis, Chalmers University of Technology
35. Grinstein FF (2006) AIAA 06-3048
36. Baba Ahmadi MH (2007) Construction of Inlet Conditions for LES. PhD The-

sis, University of Exeter
37. Tabor G (2007) Personal communication.
38. Sidwell T, Richards G, Casleton K, Straub D, Maloney D, Strakey P, Ferguson

D, Beer S, Woodruff S (2005) AIAA J 44:434
39. Liefendahl M, Persson T, Fureby C (2006) AIAA paper No 2006-0904
40. Moser RD, Kim J, Mansour NN (1999) Phys Fluids 11:943
41. Wei T, Willmarth WW (1989) J Fluid Mech 204:57
42. Byun G, Simpson RL (2005) AIAA 05-0113
43. Davidson L (2005) Test Case 11.2 – 3D Hill. In: Proceedings of the 11th Ercof-

tac/IAHR Workshop on Refined Turbulence Modeling
44. Persson T, Liefevendahl M, Bensow RE, Fureby C (2005) J Turbul 7, Art no 4
45. Groves, NC, Huang TT, Chang MS (1989) Report DTRC/SHD-1298-01



258 C. Fureby, R.E. Bensow

46. Huang TT, Liu H-L, Groves NC, Forlini TJ, Blanton J, Gowing S (1992) In:
Proceedings of 19th Symp on Naval Hydrodynamics, Seoul, Korea

47. Bensow RE, Fureby C, Liefvendahl M, Persson T (2006) In: Proceedings of
26th Sym. on Naval Hydrodynamics, Rome, Italy

48. Seiner JM, Ponton MK, Jansen BJ, Lagen NT (1992) AIAA 92-02-046
49. Walz G, Krebs W, Hoffmann S, Judith H (2002) J Engng for Gas Turb and

Power 124:3
50. Hura HS, Joshi ND, Mongia HC, Tonouchi J (1998) ASME-98-GT-444
51. Held TJ, Mongia HC (1998) ASME-98-GT-217
52. Kim W-W, Menon S, Mongia HC (1999) Comb Sci Tech 143:25
53. Grinstein FF, Fureby C (2004) In: Proceedings of the 30th Int Symp on Comb,

p 1791
54. Hosder S (2001) Unsteady Turbulent Skin Measurements on a Maneuvering

DARPA2 Suboff Model, Virginia Tech
55. Hosder S, Simpson RJ (2001) AIAA Paper 2001-1000
56. Bensow RE, Fureby C (2007) In: Proceedings of 9th Int Symp on Numerical

Ship Hydrodynamics, Ann Arbor, MI, USA
57. Alin N, Bensow RE, Fureby C, (2006) Final report, ONR contract No N62558-

06-C-2004



Quality of LES Predictions of Isothermal and
Hot Round Jet

Artur Tyliszczak, Andrzej Boguslawski, and Stanislaw Drobniak

Institute of Thermal Machinery, Czestochowa University of Technology
Al. Armii Krajowej 21, 42-200 Czestochowa, Poland
atyl@imc.pcz.czest.pl, abogus@imc.pcz.czest.pl

Abstract. The paper presents results of LES computations performed for isothermal
and non-isothermal variable density jets using high order numerical code. According
to the experimental data and linear stability theory the range of the density ratios
between jet and the ambient fluids considered in this work encloses the regimes of ab-
solute and convective type of instability. Much attention is paid to the quality of the
solutions depending on the mesh resolution and turbulence intensity imposed at the
inlet velocity profile. The differences between the solutions obtained using different
(advective/conservative) form of the Navier–Stokes equations are also mentioned.

Keywords: Absolute/Convective instability, Hot jet, Low mach number

1 Introduction

A concept of absolute and convective instabilities was introduced by Landau
[9] in the context of hydrodynamic instability of shear layer. He noted that for
certain flow conditions a small disturbance could grow in time contaminating
the flow upstream and downstream in the case of absolute instability or could
be swept away by convective motion in the case of convective instability keep-
ing the disturbance limited in time. Plasma physicists showed experimentally
a phenomenon corresponding to absolute instability predicted theoretically
by Landau [9]. Briggs [2] and Bers [1] formulated a spatio-temporal linear
stability theory which was applied to shear layer instability by Huerre and
Monkewitz [6] who analyzed the problem with respect to wakes and in plane
mixing layers of variable density. Absolutely unstable round free jets were
studied experimentally by Sreenivasan et al. [16] who observed strong oscilla-
tions in air-helium jets for the density ratio lower than certain critical value.
The exhaustive experimental work on the hot air round jet instability were
performed by Monkewitz et al. [14]. The experimental studies of air-helium
round jets were continued later by Kyle & Sreenivasan [8]. These two prin-
cipal experimental works on air-helium round jet by Kyle & Sreenivasan [8]
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and on hot-air round jet by Monkewitz et al. [14] delivered the most impor-
tant data to characterize the instability of variable density jets. Monkewitz
et al.[9] by acoustic pressure measurements identified two unstable modes in
hot-air jets. The first one, called the Mode I, was observed when the density
ratio S < 0.69 ( S = ρ1/ρ2, ratio of the jet density to ambient flow density)
with characteristic frequency StD ≈ 0.3 (D-nozzle outlet diameter). When
the density ratio was lowered to S = 0.65 another mode called Mode II was
identified with characteristic frequency StD ≈ 0.45. For density ratio within
the range 0.55 < S < 0.65 both modes Mode I and Mode II coexisted while
for density ratio S < 0.55 the Mode II dominated and the Mode I was not
observed. Kyle & Sreenivasan [8] investigated by LDV velocity fluctuations
in round air-helium jet and also observed two unstable modes. The first one
called an oscillating mode was observed for the density ratio S < 0.61 and
was identified as a mode corresponding to Mode II observed by Monkewitz et
al. [14] in heated jet. The second mode observed by Kyle & Sreenivasan [8] in
air-helium jets, called the broadband mode, which appeared when R/θ (R is
the inlet jet radius and θ is the momentum thickness of the shear layer at the
nozzle exit) reached large values. It was stated by Kyle & Sreenivasan [8] that
this mode did not correspond to Mode I in heated jets as far as both frequency
range and density ratios are concerned. Kyle & Sreenivasan [8] observed also
a critical shear layer thickness below which oscillating mode vanished what
was in contradiction with theoretical finding of Monkewitz & Sohn [15] whose
predictions showed that absolutely unstable mode was persistent even for in-
finitely thin shear layer.

The present paper is devoted to LES predictions of isothermal and heated
jets for a variety of the governing parameters like density ratio, inlet shear
layer thickness, inlet turbulence level. The main aim of the calculations per-
formed was to study whether using LES the change from the convective to
absolute instability in hot jet can be captured as observed in experimental
investigations. A special attention in the present studies was attached to the
quality of the LES results and sensitivity to mesh resolution for a variety of
the flow governing parameters.

2 Numerical method and boundary conditions

In this work we applied the so-called low Mach number expansion [3, 11] which
allows for an efficient solution in low Mach number conditions. Motivated
by analysis presented in [5] showing considerable influence of the aliasing
errors, depending on the form of the Navier–Stokes equations, we consider
LES formulation for both the advective and conservative formulation of the
non-linear terms of the Navier–Stokes equations.

The subgrid terms which appear after performing LES filtering are mod-
eled using filtered structure function model [4, 13]. Third order low-storage
Runge–Kutta method is used to solve equations in time. Within each Runge–
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Table 1 The governing parameters and the test case considered

R/θ = 10 R/θ = 20

TI = 10−4% A1 A2
TI = 2% A3 A4

Kutta step the projection method is applied to determine pressure and ve-
locity fields. The spatial discretization is performed with V Ith order compact
scheme [10] in direction of the jet axis and Fourier approximation in plane per-
pendicular to the jet. The applied code reveals to be very accurate in various
type of jet flows including natural and excited jets [17, 18].

The computational domain is a rectangular box 10D × 10D × 16D. The
periodic boundary conditions are assumed on the lateral walls while the inlet
boundary conditions are specified in terms of instantaneous velocity (defined
by hyperbolic-tangent profile [18] and white noise disturbance with assumed
turbulence intensity TI), density and temperature. At the outlet of the compu-
tational domain we applied the so-called convective type boundary conditions.

3 Results and Discussion

The systematic studies of the isothermal and hot jet for various flow govern-
ing parameters were carried out taking into account influence of the shear
layer thickness, density ratios and inlet turbulence level. For each test case
also the mesh density influence on the predicted flow structure was analyzed.
The flow parameters tested are gathered in Table 1. For the test cases A1-A4
the calculations were performed for three density ratios of the jet density to
the ambient fluid S = 1.0, 0.8, 0.6. For isothermal jet when the density ratio
S = 1.0 and for heated jet when S > 0.8 the flow is convectively unstable
while for the hot jet with density ratio S < 0.6 and certain range of the
shear layer thickness the absolutely unstable jet is expected as shown by the
spatio-temporal linear stability analysis [7] and also confirmed by experimen-
tal results. The linear stability analysis shows that the critical density ratio
for the shear layer thickness characterized by the parameter R/θ = 20 is equal
Scrit ≈ 0.7 while for thicker shear layer characterized by R/θ = 10 the rapid
decrease of critical density ratio should be observed and the critical density
ratio is equal Scrit ≈ 0.5.Hence it is expected that the flow structure for the
hot jet with density ratio S = 0.6 should be significantly different for two
test cases considered. The choice of the inlet turbulence intensity at the level
TI = 2% and TI = 10−4% results from the previous studies showing that
even quite low turbulence level TI = 2% can significantly disturb the forma-
tion of large scale coherent vortices in isothermal and hot round jet. Figure 1
on the left hand side shows the influence of the mesh density on the mean and
fluctuating velocity profiles along the jet axis for isothermal jet test case A4



262 A. Tyliszczak et al.

z/D

<
U
>
/
U
1

<
u
’
u
’
>
1
/
2
/
U
1

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

Mesh 256x160x256
Mesh 128x160x128

ρ1/ρ2 = 1.0; TI = 1.0e-2; R/θ=20

z/D

<
U
>
/
U
1

<
u
’
u
’
>
1
/
2
/
U
1

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

Mesh 256x160x256
Mesh 128x160x128

ρ1/ρ2 = 1.0; TI = 1.0e-6; R/θ=20

Fig. 1 Mean and fluctuating profile of the axial velocity for S = 1.0, R/θ = 20:
TI = 2% (left figure) and TI = 10−4% (right figure)

that means for higher inlet turbulence level TI = 2% and thinner shear layer
characterized by parameter R/θ = 20. For finer mesh the potential core of the
jet is shorter that is consistent with higher turbulence level growth rate. How-
ever, qualitatively the results are similar and the maximum turbulence level at
the jet axis is close in both predictions. The influence of the mesh density on
the mean and fluctuating velocity turned out to be much stronger in the case
of very low inlet turbulence level as shown in Fig. 1 on the right hand side. In
this case the prediction obtained with coarser mesh 128×160×128 shows very
long potential core up to distance approximately x/D = 12 from the nozzle
exit while the results obtained with the finer mesh 256×160×256 reveals much
shorter potential core extending only up to x/D = 4 with a local minimum
of the mean velocity at the distance x/D = 7. This local minimum coincides
with the very high turbulence level at the jet axis < u′u′ >1/2 /U1 = 24%.
Evolution of the axial velocity component spectrum at the shear layer and
the jet axis presented in Fig. 2 reveals in the jet near region a dominating
peak characterized with non-dimensional frequency based on the jet diameter
StD = 0.5. This fluctuation is a result of growing Kelvin-Helmholtz instabil-
ity. Starting from the distance x/D = 4 this fundamental mode is decaying
while the subharmonic mode StD = 0.25 is growing rapidly attaining its max-
imum at the distance x/D = 8. Such an evolution of the velocity spectrum
is characteristic for the vortex pairing process. The vortex pairing process is
clearly shown in Fig. 3 where the Q parameter and axial velocity iso-contours
are shown. Formation of large coherent vortices resulting from the vortex
pairing process corresponds to the local maximum of the fluctuating velocity
at the distance x/D = 8 from the nozzle outlet. Further downstream these
large scale vortex rings break up due to circumferential instability which is
associated with the formation of so called side jets also well characterized by
the Q parameter iso-surfaces shown in Fig. 3 on the left hand side. The large
scale structures break up is associated with a decay of the fluctuating velocity
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Fig. 2 Evolution of the spectrum of axial velocity component at the shear layer and
the jet axis for S = 1.0, R/θ = 20, TI = 10−4%, mesh 256 × 160 × 256

Fig. 3 Isosurface of the instantaneous Q parameter for S = 1.0, R/θ = 20, TI =
10−4% (left figure) and TI = 2% (right figure), mesh 256 × 160 × 256

up to the distance x/D = 10. Further growth of the fluctuating velocity is a
result of the fully turbulent flow as at the distance x/D = 12 only a small
peak with the frequency StD = 0.25 is present (not shown). The Q parameter
at this distance shows also only small scale vortical structures. The results
shown above for two test cases characterized by two different inlet turbulence
level TI = 2% and very low value TI = 10−4% confirm the opinion expressed
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Fig. 4 Mean and fluctuating profile of the axial velocity for S = 1.0, R/θ = 10:
TI = 2% (left figure) and TI = 10−4% (right figure)

in the paper of Meneveau & Katz [12] that coherent structures may be much
larger when the shear layer is laminar. However, the mesh density analysis
performed within current studies shows that in this case mesh resolution is
crucial for the correct prediction of the coherent vortices with LES method.
If the turbulence level is high enough to disturb the process of coherent vor-
tex formation the influence of the mesh resolution is much weaker as shown
in Fig. 1. The evidence that the coherent structures are much weaker for the
inlet turbulence level TI = 2% even for high resolution LES predictions is con-
firmed by analysis of the Q-criterion for this test case shown in Fig. 3 on the
right hand side. This conclusion is also confirmed by the axial velocity spec-
trum (not shown in the paper) where broadband velocity fluctuations around
the non-dimensional frequency StD = 0.5 are visible. Next the analysis of the
mesh resolution was performed for the test cases A1 and A3 for the thicker
shear layer characterized by the parameter R/θ = 10. The mean and fluctu-
ating velocity profiles for inlet turbulence level TI = 2% and TI = 10−4% are
shown in Fig. 4. As previously for the higher inlet turbulence level the mesh
resolution does not change the results qualitatively. It could be interpreted as
before that the inlet turbulence level is sufficiently high to disturb the process
of vortex formation and the resolution required to predict correctly the large
scale coherent vortices is not so important in this case. Although for the finer
mesh (Fig. 4 on the right hand side) the higher growth rate of the fluctuating
velocity is observed at the distance x/D = 5 ÷ 9 showing that vortex pair-
ing process is captured better than in the case of coarser mesh. However, on
the contrary to the previous results obtained for thin shear layer R/θ = 20
shown in Fig. 1, in the case of thicker one R/θ = 10 the mesh refinement does
not bring significant change of the results. The Kelvin-Helmholtz instability
scales on the shear layer thickness and for thicker shear layer the growth rate
of the oscillation is smaller than for thin one. It means that the distance on
which the coherent structures are formed is longer and turbulent fluctuations
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Fig. 5 Mean and fluctuating profile of the axial velocity for R/θ = 20, TI = 2%
and S = 1.0, 0.8, 0.6 for the coarse mesh (left figure) and the fine mesh (right figure)

imposed on the growing vortical structures disturb their formation leading to
faster break up. Hence even for extremely low inlet turbulence level in the
case of thicker shear layer the conditions for vortex formation are not good
enough and high mesh resolution does not improve the results significantly.

The analysis of the quality of LES predictions of the isothermal jet pre-
sented so far were continued with the analysis of heated jet for two density
ratios S = 0.8 and S = 0.6. The influence of the density ratio on the mean
and fluctuating velocity distribution along the jet axis for the test case A4
(TI = 2% and R/θ = 20) for coarse and fine mesh is shown in Fig. 5. For
both mesh resolutions it is seen that the density ratio does not change the flow
structure qualitatively. Even for the lowest density ratio S = 0.6 for which
the absolute instability is expected, as predicted by linear stability theory, it
seems that the change of the instability scenario is not captured well by LES
predictions. Again it seems that assumed inlet turbulence level TI = 2% is
sufficiently high to disturb the vortex formation also in the case of heated jet.
The situation changes drastically if the laminar shear layer is assumed at the
inlet conditions as for the test case A2 for which the velocity profiles are shown
in Fig. 6 for the coarser and finer mesh respectively and for various density
ratios. For the coarser mesh (Fig. 6 on the left hand side) the results corre-
sponding to the density ratio S = 0.6 are not significantly different compared
to the isothermal and slightly heated jet (S = 0.8). The local maximum of the
fluctuating velocity at the distance x/D = 7 for the density ratio S = 0.6 is
higher than in the case of isothermal and slightly heated jet that could be in-
terpreted as a change of the instability mechanism due to density differences.
However, surprising results are obtained with the mesh refinement shown in
(Fig. 6 on the right hand side). In this case the mean and fluctuating velocity
for isothermal flow and slightly heated one are close each other while for the
hot jet with density ratio S = 0.6 a significant change is observed for both
the mean and fluctuating velocity profiles. By contrast to the results obtained
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Fig. 6 Mean and fluctuating profile of the axial velocity for R/θ = 20, TI = 10−4%
and S = 1.0, 0.8, 0.6 for the coarse mesh (left figure) and the fine mesh (right figure)

with the coarser mesh the decrease of the density ratio down to S = 0.6 leads
to lower fluctuating velocity at the distance x/D = 7. Moreover comparing
the results obtained with the coarser and finer mesh one can observe that the
mesh resolution influences much more the results for isothermal and slightly
heated jet than the results for the hot jet. It seems that an explanation of such
influence of the mesh resolution could be similar to the one discussed above
for the case of the jet characterized by thicker shear layer. In the case of the
hot jet with the density ratio S = 0.6 the instability scenario is changed com-
pared to the isothermal or slightly heated jet. It results with faster break up
of large scale coherent structures leading to much lower fluctuating velocity at
the jest axis. Hence, because of the flow conditions the large scale structures
are not fully formed and the mesh resolution as in the previous case does not
influence the LES predictions of the hot jet. The Q parameter isosurfaces for
the hot jet with density ratio S = 0.8, 0.6 are shown in Fig. 7. It can be seen
from this picture that vortical structures are not so large as in the case of
isothermal jet shown in Fig. 3.

The problem of the instability mechanism for the hot jet is worth of careful
discussion. The question could be posed whether current LES results actually
capture correctly the absolute instability phenomenon. Unfortunately, it is a
significant difficulty in the physical interpretation of the results presented so
far, however some observations proving correctness of the LES prediction of
absolute instability can be made. We could already see that there are consider-
able differences in the mean and fluctuating velocity profiles when the density
ratio is lowered to S = 0.6 – this could already be interpreted as the change
of the instability mechanism. Let us now analyze the spectral characteristics
of the flow conditions for isothermal and heated jet. The convective instabil-
ity present in the isothermal and slightly heated jet scales on the shear layer
thickness and for the one considered in current studies, characterized with
R/θ = 20, the preferred non-dimensional frequency is StD = 0.5, as shown
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Fig. 7 Isosurface of the instantaneous Q parameter for R/θ = 20, TI = 10−4% for
S = 0.8 (left figure) and S = 0.6 (right figure), mesh 256 × 160 × 256

in the velocity spectra in Fig. 2. On the other hand the absolutely unstable
mode scales on the jet diameter and as shown by the linear stability theory
is characterized by frequency also close to StD = 0.5. This means that both
convective and absolute instability could generate oscillations with the same
frequency. This is confirmed by the velocity spectra for the hot jet shown in
Fig. 8:

• actually there are no additional peaks present comparing to the velocity
spectra for the isothermal case (see Fig. 2);

• additionally one may observe that closer to the jet inlet the amplitudes of
peaks corresponding to the preferred mode and its subharmonic are much
larger for the heated jet with S = 0.6 than for the isothermal case.

These observations may suggest superposition of phenomena originating from
different sources (one of them is the absolute instability) and therefore the
LES prediction of existence of the absolute instability in the heated jet seems
to be correct. However, in order to univocally verify this statement it would be
necessary to perform LES prediction of the jet characterized with shear layer
thinner than R/θ = 20 for which the convective instability should generate
fluctuations with higher frequency while the frequency related to the absolute
instability should stay unchanged and should correspond to StD = 0.5. In this
case one could distinguish both instability mechanisms in the case of the hot
jet. Unfortunately thinner shear layer will require considerably higher mesh
resolution resulting in much longer CPU time and due to limited computer
resources such computations have not been carried out so far.

The last issue considered within the current studies devoted to the quality
of LES predictions of the round jet was the problem of the form of the filtered
Navier–Stokes equations solved. All the results discussed above were obtained
solving advective form of the momentum equations. Nevertheless, motivated
by an interesting discussion presented in [5] concerning the level of errors
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Fig. 8 Evolution of the spectrum of axial velocity component at the shear layer and
the jet axis for S = 0.6, R/θ = 20, TI = 10−4%, mesh 256 × 160 × 256

arising due to discretisation of the conservative and advective form of the
Navier–Stokes equations we decided to perform similar analysis in the present
study. Therefore, for most of the test cases presented previously we performed
computations using both the advective and conservative form, however due
to the limited size of the paper only two cases for the isothermal flow are
presented. For the test case A4 (see Fig. 9) it can be seen that if the advective
form of the N-S equations is applied, then a little faster growth rate of the
fluctuations is predicted in the range x/D = 5÷8, but the results are in general
close each other at least qualitatively. However, surprising results are obtained
for lower turbulence intensity (case A2 Fig. 9 on the right hand side). In this
case the results obtained with conservative form of the N-S equations are
qualitatively different from the corresponding solution of the advective form
of the equations. Further studies are necessary to explain this observations but
at the current stage it seems that this effect is also related to the existence
of the large scale coherent structures present in the solution. For the solution
in which the coherent vortices break up faster (or they are not formed) like
in the case of higher turbulence intensity, the numerical errors due to the
discretization of different form of the equations do not affect the solution
significantly. On the other hand the solution seems to be very sensitive to the
numerical errors when the fully developed coherent vortices are predicted in
the flow field.
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Fig. 9 Mean and fluctuating profile of the axial velocity for S = 1.0, R/θ = 20:
TI = 2% (left figure) and TI = 10−4% (right figure) for conservative and advective
for of the nonlinear term in the N-S equations

4 Conclusions

The paper presents detailed LES studies of isothermal and heated round jet
with particular attention devoted to the LES results quality due to mesh
resolution and some numerical errors. The influence of the governing param-
eters like shear layer thickness, inlet turbulence level and density ratio was
discussed. It was suggested that the LES results quality is very sensitive to
the mesh resolution and numerical errors in all the test cases in which strong
large scale vortical structures could develop. In such cases mesh refinement
and numerical scheme can change qualitatively the results of the mean and
fluctuating velocity profiles. One could also suppose that if the results are af-
fected significantly by the mesh resolution and numerical scheme when strong
coherent vortices are present in the solution all these test cases would be very
challenging for the subgrid modeling. The LES studies of the flow with large
scale coherent structures using a variety of subgrid models is planned for near
future.
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Abstract. In this paper we raise several issues, e.g. resolution, Reynolds number de-
pendency, mesh quality and inflow boundary conditions for Large-Eddy Simulation
(LES) of street scale flows, scalar dispersion and heat transfer within urban areas.
Some of the issues are addressed extensively and some LES results of test cases are
presented. The other issues are discussed and commented for further study. Finally
we attempt to foresee prospects for the use of LES for urban environments with
a computational domain size up to a few kilometers and a resolution down to one
meter.

Keywords: Urban canopy layer, Cuboid-shape body, Resolution, Reynolds number
dependency, Inflow condition, Efficiency, Point source dispersion, Heat transfer

1 Introduction

There is a growing concern about the urban environment. In our previous
work, we have demonstrated that LES is a promising tool for this area [10].
However, in order to establish the credibility of LES as a tool for opera-
tional/practical forecast applications, there are many issues which must be
addressed, such as:

• Is there a general minimum resolution needed to produce reasonable tur-
bulence statistics? If the answer is ‘YES’ for the flow, is it also applicable
for scalar dispersion?

• Is LES reliable for the high Reynolds numbers typical of urban flows?
• How much does LES accuracy depend on the mesh quality in such cases?
• Efficient inflow boundary conditions (e.g. via appropriate generation of

artificial turbulence) need to be coupled to the weather scale flow and the
urban boundary layer. What errors are involved in doing this?
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In this paper, we investigate the quality and reliability of LES for street-
scale flows, mainly by undertaking numerical-sensitivity experiments, rather
than attempting to quantify the uncertainty and error of LES as in [8].

2 Governing Equations of Large-Eddy Simulation

To ensure a largely self-contained paper, a brief description of the governing
equations is given here. More details can be found in [10], hereafter denoted
by XC.

The filtered continuity and Navier-Stokes equations are written as follows,

∂ui

∂xi
= 0

∂ui

∂t
+

∂uiuj

∂xj
= −1

ρ

(
∂p

∂xi
+ δi1

∂〈P 〉
∂x1

)
+

∂

∂xj

(
τij + ν

∂ui

∂xj

)
. (1)

The dynamical quantities, ui, p are resolved-scale (filtered) velocity and pres-
sure respectively and τij is the subgrid-scale (SGS) Reynolds stress. δi1 is
the Kronecker-delta and ν is the kinematic viscosity. ∂〈P 〉/∂x1 is the driving
force, a constant streamwise pressure gradient which exists only when peri-
odic inlet-outlet boundary conditions are applied but otherwise vanishes. The
Smagorinsky SGS model was used with Cs = 0.1. In the near-wall region, the
Lilly damping function was also applied. Note that the Smagorinsky model
is widely used by researchers to simulate the kind of flow of most concern to
us – rough-wall flows – with considerable success [10].

The wall model is generally an important issue for LES, and is no less
important than the SGS model if the computational cost is to be minimised.
For cases where the fine eddies in the vicinity of the wall are important, it is
recommended that N +

1 is of order of unity (N +
1 is the distance in wall units

between the centroid of the first cell and the wall assuming the N coordinate
is normal to the wall). Note, however, that for a complex geometry, where
separation and attachment processes occur, it is impossible to satisfy this
criteria everywhere. We argue that, unlike the situation for smooth-wall flows,
it is in fact not necessary, at least for obtaining overall surface drag and the
turbulent motions at the scale of the roughness elements (buildings), which
turn out to be dominant (see XC).

The local wall shear stress is then obtained from the laminar stress-strain
relationships:

u+ =
u

ûτ
, N + =

ρûτN

μ
, N + = u+, (2)

where ρû2
τ is the local wall shear stress. However, if the near-wall mesh is not

fine enough to resolve the viscous sublayer, for simplicity it is assumed that
the centroid of the cell next to the wall falls within the logarithmic region of
the boundary layer:
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u

ûτ
=

1
κ

lnE
(
ρûτN

μ

)
, (3)

where κ is the von Karman constant and E is an empirical constant. The log-
law is employed when N + > 11.2. Again, note that for very rough-wall flows
there are probably very few regions on the surface of the roughness elements
where log-law conditions genuinely occur in practice; however, we have shown
earlier that for this type of flow the precise surface condition is unimportant
for capturing the element-scale flows and surface drag (see XC).

The entire LES model was implemented in the code described in XC.
Crucially, the discretisation for all terms in Eq. (1) was second order accurate
in both space and time – lower-order schemes were found not to be adequate
but, equally, for the kind of problems addressed here it is not necessary to
use schemes that are of even higher order. Inlet boundary conditions were
set using a User-Defined-Function, embodying the technique described in the
following section.

3 Reynolds Number Dependency and Minimum
Resolution

Recently an LES model was used to calculate the turbulent flow over staggered
wall-mounted cubes and a staggered array of random height obstacles with
area coverage 25%, at Reynolds numbers between 5× 103 and 5× 106, based
on the free stream velocity and the obstacle height [10]. Three meshes with
8× 8× 8, 16× 16× 16 and 32× 32× 32 grid points respectively per building
block were used for flow at the various Reynolds numbers. The significantly
coarser mesh than required for a full DNS, i.e. 16 × 16 × 16 grid points per
building block, produces sufficiently accurate results. Turbulence generated by
urban-like obstacles, e.g. cuboid-shape bodies with sharp edges, is building-
block-scale dominated, which suggests that for this type of flow the precise
wall condition/subgrid-scale model is unimportant for capturing the element-
scale flows and surface drag.

Re = 5× 103 is low enough for the 32× 32× 32 resolution to be ‘almost’
DNS, but flows at Re = 5× 104 and Re = 5× 106, with coarse or fine grids,
generated almost identical non-dimensional statistics compared with those at
Re = 5×103, even though the high-frequency end of the spectrum was not well
captured in some cases. Also, surface drag obtained using the same resolution
was comparable between various Reynolds numbers, as also found in labo-
ratory experiments. The results collectively confirm that Reynolds number
dependency, if it does exist, is very weak (except no doubt very close to solid
walls), principally because the surface drag is predominantly form drag and
the turbulence production process is at scales comparable to the roughness
element sizes, as suggested also by wind tunnel experiments.

LES is thus able to simulate turbulent flow over the urban-like obstacles
at high Re with grids that would be far too coarse for adequate computation
of corresponding smooth-wall flows. A wide inertial sub-range in flows over
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urban-like obstacles may also suggest that turbulence reaches a quasi-isotropic
state at relatively lower frequency than non-vortex-shedding flows at similar
Reynolds numbers, which is another reason why a simple SGS model can give
reasonable results. Whilst improvement of the SGS model, via more expensive
dynamic models for example, may enhance the simulation in the close vicinity
of the solid walls at high Reynolds number and, likewise, improvements in the
wall model itself may increase accuracy near the element walls, it is much more
important to use grids which can resolve the major features of the separated
shear layers. The influence of the small-scale motions, captured increasingly
inadequately as Re rises, is much lower in these flows than it is in smooth-
wall equivalents. This is all greatly beneficial for the numerical simulation of
the coupling between weather scale flows and street scale flows. Our major
conclusion is thus that LES may be reliably able to simulate turbulent flow
over urban areas at realistic Reynolds numbers, with what (in more ‘classical’
flows) would normally be thought of as inadequate grids. It is suggested that
medium sized meshes on the body scale (e.g. 15–20 grid points at least over a
typical body dimension) are sufficient for the simulation of a real urban area,
at least for obtaining the total drag force or the large-scale flow dynamics.

4 Mesh Type and Wall-Layer Resolution

4.1 Tetrahedral Mesh vs. Hexahedral Mesh

In the computations discussed above, only Cartesian (hexahedral) meshes
were used for generic surfaces. In order to simulate the flows over a genuine
urban canopy with a more complex geometry, unstructured non-hexahedra
meshes inevitably have to be used. Tetrahedral meshes are widely used in CFD
because methods which do this are mature, efficient and highly automated [7].
It is worth investigating the reliability and accuracy of the tetrahedral mesh
for LES of the urban-type flows.

Fine and coarse tetrahedral meshes (see Fig. 1) were used to simulate the
flows in the same computational domain (4h× 4h× 4h; h cube height) as in
[10] for an array of uniform staggered cubes, i.e. four cubes with area coverage
25%. The lengths of the side of the tetrahedral cells were approximately h/16
and h/8 respectively for fine and coarse meshes(1.3M cells and 0.16M cells
respectively in total). The Reynolds number was 5 × 103 based on the free
stream velocity and the cube height. The other settings were the same as
those in [10].

Figure 2 shows a typical comparison of vertical profiles of the turbulence
statistics behind a cube using the hexahedral mesh (16× 16× 16 grid points
per cube) and the tetrahedral meshes. Clearly, increasing the resolution of
the tetrahedral mesh improves the profiles. However, even the fine tetrahe-
dral mesh (1.3M cells) evidently underestimates the turbulence fluctuations
compared to the hexahedral mesh (0.25M cells). Perhaps not surprisingly, the
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(a) (b) (c)

Fig. 1 A vertical cut on the chain-dotted line in (c) of tetrahedral meshes for an
array of uniform cubes. (a), fine mesh(1.3M cells); (b), coarse mesh(0.16M cells);
(c), the square highlighted by the dotted line indicates the plan view of the compu-
tational domain
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Fig. 2 Comparison of vertical profiles of the turbulence statistics behind cube (in-
dicated by the dot in the inset in (b) using hexahedral (0.25M cells) and tetrahedral
meshes. (a) spanwise and (b) vertical fluctuation velocities

accuracy of the tetrahedral meshes, even at the higher resolution, is confirmed
as being not so high as that of the uniform hexahedra mesh.

4.2 Polyhedral Mesh vs. Hexahedral Mesh

Polyhedral meshes offer substantially better properties than tetrahedral
meshes [7]. However, there is relatively little experience available with such
meshes. A polyhedral mesh was validated for flow over (initially) uniform
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cubes and then a more random geometry (i.e. 64 staggered blocks with ran-
dom heights). Only the latter is reported here.

The size of a ‘repeating unit’ of the obstacle array was 80 mm × 80 mm,
within which were placed in regular staggered pattern sixteen 10-mm-square
elements having heights chosen from an appropriate normal distribution. Four
repeating units were included in the whole computing domain (hence the
total number of obstacles is 64), so the domain size was Lx × Ly × Lz =
16hm×16hm×10hm, where hm = 0.01 m is the mean height of the obstacles.
The Reynolds number was 5000 based on the free stream velocity and the
mean height. A three-level hexahedral mesh (2.3 million cells) with 16×16×16
cells per hm×hm×hm in the near wall region (see Fig. 3c), and a three-level
polyhedral mesh (1.3 million cells) with 13× 13× 13 cells per hm × hm × hm

in the near wall region (see Fig. 3d) were used.
Essentially identical results were obtained using the polyhedral mesh and

hexahedral mesh, despite the much smaller number of cells used in the former.
This may suggest that the two meshes are both satisfactory. It is known that

A

(a)

(b)

(c)

(d)

Fig. 3 (a), plan view of one repeating unit with numbers indicating the block
height in mm; (b), a view of one repeating unit used in the laboratory experiment
[3]; (c), hexahedral mesh (16 × 16 × 16 grids on the 10 mm cube, 2.3M cells); (d),
polyhedral mesh (13× 13× 13 grids on the 10 mm cube, 1.3M cells), for an array of
obstacles with random heights
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Fig. 4 Vertical profiles of mean velocity and turbulence statistics behind 17.2 mm
block (i.e. station A in Fig. 3a) using hexahedral and polyhedral meshes

the former is more flexible for complex geometry than the latter. Furthermore,
the results confirm that the polyhedral mesh is more accurate and less memory
consuming than the widely used tetrahedral mesh. Figure 4 presents stream-
wise mean velocity and velocity r.m.s profiles behind the 17.2 mm block, i.e.
station A in Fig. 4a.

4.3 Importance of Wall-Layer Resolution

How important are the wall-layers on the building surfaces? The computation
domain typically may contain tens or hundreds of buildings. For instance,
the DAPPLE geometry (http://www.dapple.org.uk/), which is one we are
currently simulating, has nearly one hundred buildings. To resolve all of the
wall layers would be extremely expensive at present.

LES was applied to calculate the turbulent flow over staggered wall-
mounted uniform cubes with area coverage 25% at Reynolds number of 5000
based on the free stream velocity and the cube height. The computational
domain and the other settings were the same as those in §4.1. A pure poly-
hedral mesh of more than 0.1 million cells with 13 × 13 × 13 grid points per
cube was used (Fig. 5a, C20SA). A second polyhedral mesh with a similar
number of cells but with five wall-layers on the solid surfaces was also used
(Fig. 5b, C20SB). The distances in wall units of the centroid of the first cell
from the wall, z+

1 , for C20SA and C20SB were approximately 7.8 and 1 re-
spectively, based on the global friction velocity u∗. Note that the distances
in wall units of the centroid of the first cell from the wall based on the local
friction velocity, z+

l1, were much lower, because obstacle form drag provides
the dominant part of the total drag. Figure 6 shows a comparison of vertical
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(a) (b)
Fig. 5 Polyhedral meshes without (a) and with (b) wall-layers for an array of
uniform cubes. Computational domain as in Fig. 1c
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Fig. 6 Comparison of vertical profiles of mean velocity and turbulence statistics
between meshes with (BL, C20SB) and without (no BL, C20SA) wall-layers

profiles of normalised mean streamwise velocity U , velocity fluctuations urms

& wrms and Reynolds shear stress −u′w′. The differences between ‘BL’ and
‘no BL’ are hardly discernible, which suggests that it is not crucial to resolve
the wall-layers on the building surfaces if the details within the wall-layers are
not of particular interest.

By using numerical experiments like these, we have concluded that full
resolution of the wall-layers is not important for the global turbulence statis-
tics, nor for the mean drag of the complete surface. Note, however, that if
heat transfer processes are important the same conclusion may well not hold.
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5 Inflow Conditions and Large-Scale Unsteady Flows

Coupling weather-scale computations (for example from the UK Met Office’s
weather code, the Unified Model) to smaller-scale computations of flow and
dispersion within urban environments requires a particularly efficient means
of providing dynamically changing turbulence data at the inlet of the com-
putational domain. This is especially true if the street-scale flows are to be
modelled using LES.

Autocorrelation functions of typical turbulent shear flows have forms not
too dissimilar to decaying exponentials. A digital-filter-based generation of
turbulent inflow conditions exploiting this fact was developed [11] as a suitable
technique for LES computation of spatially developing flows. The artificially
generated turbulent inflows satisfy prescribed profiles of integral length scales
and the Reynolds-stress-tensor. The method is more suitable for developed
turbulent shear flows, e.g. the flow over an urban area, than the one proposed
by [4]. It is also much more efficient than, amongst others, Klein’s methods
because at every time step only one set of two-dimensional (rather than three-
dimensional) random data is filtered to generate a set of two-dimensional data
with the appropriate spatial correlations. These data are correlated with the
data from the previous time step by using an exponential function based on
two weight factors.

In [12], LES of plane channel flows and flows over a group of staggered
cubes has provided satisfactory validation of the technique, with results show-
ing good agreement with simulations using periodic inlet-outlet boundary con-
ditions and reasonable agreement with data from other sources – both DNS
and laboratory experiments. These satisfactory validations, the fact that the
results are not too sensitive to the precise form of the prescribed inlet tur-
bulence, and the high efficiency of the technique, together suggest that the
method will be very useful for practical simulations of urban-type flows.

Understanding the mechanism by which the urban boundary layer and the
regional weather model are coupled aerodynamically and thermodynamically
is known to be vital but is still in its infancy. Unsteadiness of the large scale
driving wind probably has significant impact on the turbulent flows within the
urban boundary layer [9]. For implementing dynamic spatial boundary con-
ditions derived from the unsteady output of much larger-scale computations,
like those available from the UK Met Office’s Unified Model (UM), coupled
with the new small-scale turbulence inflow method described as in §5, tools
need to be developed to simulate flows over genuine urban geometry.

The question arises as to how such tools can be validated. Both pure
oscillatory flow and a combined oscillatory flow with an added mean current
have attracted researchers’ attention for decades, with most studies being
experimental [1, 2, 9]. As a validation, for investigating unsteady large-scale
driving flows, we numerically simulated a combined oscillatory throughflow
and mean current (here labelled as C20SOI) over a group of cube arrays (eight
rows of cubes, see Fig. 9c) using the inflow-generating method. An assumption
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was made here that at the inlet the turbulent fluctuations (urms, vrms and
wrms) are in phase with the mean streamwise velocity defined by

U = U0[1.0 + 0.5 sin(2πt/T )], (4)

where U is the phase averaged streamwise velocity, U0 is the mean stream-
wise velocity of the current, T = 322.6h/u∗ is the (relatively long) oscillation
period, h is the height of the cube and u∗ is the mean friction velocity. This
assumption might not be too unreasonable for street-scale urban flows which
are driven by the geostrophic wind.

For the same computational domain, a second LES run was conducted
with a combination of a steady and an oscillatory pressure gradient and with
streamwise periodic boundary conditions. This is labelled C20SOP and the
unsteady pressure gradient is defined by

dP

dx
= − ρ

D
{u∗[1.0 + 0.5 sin(2πt/T )]}2, (5)

where D = 4h is the depth of the domain and ρ is the density. The resulting
mean streamwise velocity can be written as U = U0[1 + α sin(2πt/T − φ)],
where α and φ (the phase lag) are parameters to be obtained by using a
fitting method. The velocity r.m.s values (urms, vrms, wrms) are assumed to
be of similar form to this equation.

Results obtained from the two driving methods are illustrated in Fig. 7,
which shows the algebraically averaged profiles of the phase-averaged statistics
obtained by the two methods and compared with the previous steady flow case
(§4.1). The ‘Oscillatory, body force’ case is in marginally better agreement
with the ‘Steady, body force’ than the ‘Oscillatory, inflow’ case, in particular
within the canopy. The discrepancies might have two sources: (1) in Eq. (5)
there is a higher frequency component, ρ{u∗0.125[1 − cos(4πt/T )]}; (2) the
phase of U , urms, vrms, wrms lags that of dP/dx (see Eq. (5)).

Hence, an investigation of the mechanisms in the combined oscillatory
throughflow superposed on a mean current was also attempted. We found
that the phase lags of U , u′w′, urms and wrms are approximately 45 degree
at all heights for C20SOP. This is reflected in the surface drag; Fig. 8 shows
time series of the driving force, i.e. the body force in Eq. (5), and the total
instantaneous drag on the sixteen cubes; a clear 45 degree phase lag is seen.

Figure 9 shows a comparison of phase averaged streamwise velocity be-
tween C20SOI and C20SOP. Note that here for C20SOP the phase is 2πt/T−φ
and that the phase-averaged statistics for C20SOI were obtained behind row
seven (the ‘dot’ in Fig. 7, r.h.s.). Figure 9b shows that at all heights for C20SOI
the streamwise velocity keeps the same phase, whereas Fig. 9a for C20SOP
shows a very slight variation of phase lag with height. Nevertheless, the data
in Fig. 9a and b have an almost identical pattern. The phase averaged turbu-
lence statistics (urms, wrms and u′w′) also show almost identical patterns in
the two cases. We conclude that our inflow turbulence generation method is
adequate for cases where there are long-time-scale variations at the upstream
boundary.
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6 Conclusions

Currently such LES simulations (using steady large-scale boundary conditions
obtained from the UM), like those for the Marylebone Road area of Lon-
don recently studied at both field and laboratory scale under the DAPPLE
project (http://www.dapple.org.uk/), are showing great promise. The inflow
and polyhedral mesh techniques have been applied for the turbulent flow and
point source dispersion over the DAPPLE field site, which is located at the
intersection of Marylebone Road and Gloucester Place in Central London.
The computational domain size was 1200 m (streamwise) × 800 m (lateral)
× 200 m (in full scale), with a resolution down to approximately one meter.
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Fig. 9 Vertical profiles of phase averaged streamwise velocity. (a), C20SOP: body
force driving; (b), C20SOI: inflow; (c): plan view of the 8 rows of cubes

Numerical simulations have focused on the case of southwesterly winds and a
tracer release at York St. between Monatgue St. and Gloucester Place. The
mean velocity and the Reynolds stress profiles at fourteen sites and mean
concentration at ten sites are in good agreement with the wind tunnel ex-
periments conducted under the DAPPLE programme (at EnFlo, University
of Surrey) and, incidentally, have been found to be significantly better than
results obtained using RANS techniques.

On the basis of our current success, we are optimistic about the reliability
and affordability of LES for simulating flow and scalar dispersion within and
above usefully-sized sub-domains of a city region, at a resolution down to one
meter. Problems involving significant heat transfer effects are, however, likely
to pose even greater challenges.
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Abstract. This work presents on-going research on large-eddy simulations of shock-
generated mixing in Richtmyer-Meshkov flow in converging geometries. A hybrid
numerical method is used on each subgrid of the mesh hierarchy within the AMROC
(adaptive mesh refinement object oriented C++) framework: it is a shock capturing
method but reverts to a centered scheme with low numerical viscosity in regions of
smoother flow. The stretched-vortex subgrid-scale model allows for the capturing of
the small-scale mixing process between the two fluids. Results presented focus on
the evolution of the mixing layer and its internal statistics including various spectra
and p.d.f.s of mixed molar and mass fractions. A detailed quantitative analysis has
also been conducted including space-time histories of instantaneous cylindrical shell-
averages of diverse quantities, taken concentrically to the main shocks. Comparisons
are made with the planar Richtmyer-Meshkov instability with reshock studied by
Vetter and Sturtevant (1995) [1] and Hill et al. (2006) [2].

Keywords: Large-eddy simulations (LES) with strong shocks, Richtmyer-Meshkov
instability (RMI), Compressible turbulent mixing, Adaptive mesh refinement (AMR)

1 Introduction

1.1 Flow Description

The RMI occurs when an interface between two fluids of different density is
impulsively accelerated by a shock wave depositing baroclinic vorticity on the
interface. Such instability can be seen as the impulsive limit of the Rayleigh-
Taylor instability [3, 4]. Examples of the occurrence of the RMI in converging
geometries are present in experiments aiming to achieve inertial confinement
fusion or in natural phenomena such as supernova collapse. While the linear
regime of the purely azimuthal RMI has been recently analyzed [5], two-
dimensional simulations of the instability in polar imploding and exploding
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Fig. 1 (a) Initial flow description. (b) One-dimensional wave diagram (r, t) obtained
by studying the radially symmetric converging-shock/unperturbed-interface interac-
tion; characteristics ur − a (sound speed a) are superposed on the close-up; time is
dimensionalized by the implosion time, radius by initial position of the interface

geometries using a front-tracking method have also been performed [6]. The
latter work has related the first reshock event but has not pursued any study
of the three-dimensional turbulent mixing following.

Figure 1(a) depicts a converging cylindrical shock impacting a perturbed,
cylindrically-shaped density interface that separates (light) air from (heavy)
SF6 (Atwood number A = 2/3), both at rest. The transmitted shock converges
inwards, reflects off the apex, and reshocks the highly distorted interface,
initiating a strong turbulent mixing. Multiple reshock events follow, as inferred
from Fig. 1(b). While the planar interaction between a shock and a ‘heavy SF6

to light air’ contact produces a reflected rarefaction wave, each (heavy to light)
reshock interaction generates a reflected wave that focuses on a shock, and
reflects at the apex as a new shock that drives the next reshock interaction.
The successive reshock events occur with lower intensity but in a self-similar
way, eventually concentrating the heavy fluid inside. Stronger initial incident
shocks trap the heavy fluid closer to the apex.

1.2 Initial and Boundary Conditions

It is assumed that shock-wave/boundary-layer interaction does not play a
dominant role in the growth of the turbulent mixing zone (TMZ) and slip
boundary conditions can be applied at the reflected walls. Periodic boundary
conditions are used in the z-direction of the cylinder axis. The measured loca-
tion and extent of the TMZ suggest that the turbulent region does not reach
the inner cylindrical wall, which is used to regularize the apex (cf. Fig. 1(a)).
It can also be employed to prescribe zero-gradient boundary conditions over
an outer cylindrical boundary.
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The flow behind the cylindrical converging shock is initialized with the
approximate solution of Chisnell [7], whose self-similar structure has been
preliminary confirmed by simulations of a single converging shock. In addi-
tion, the Guderley exponent, characterizing the shock position history, has
been confidently computed before and after apex reflection. This choice of
initial conditions completely avoids spurious waves and leaves only the shock
thickness as intrinsic length scale. Simulations have been performed for the
incident shock strength MI = 1.3 and 2.0, where MI is the Mach number of
the shock immediately before impact onto the interface.

The interface is initially located around the mean radial position r = R0

and has a fully resolved intrinsic thickness. In order to ensure an effective
mixing, the shape of the interface is specified as a linear combination of a
regular perturbation in both azimuthal and axial directions | sin(nθ) sin(kz)|
with wavelengths comparable at the reshock time and amplitude about 5% of
R0, and a symmetry-breaking perturbation with amplitude that has a random
phase and a prescribed power spectrum with peak wavelength close to R0.

2 Equations of Motion and Subgrid Modeling

2.1 Favre-Filtered Navier-Stokes Equations

The reshock process produces a large dynamical range of turbulent scales,
necessitating the use of LES. If the overbar denotes the filtering operation,
any Favre-filtered quantities is defined by f̃ = ρf/ρ, and the LES equations of
motion in conservative form are obtained by Favre-filtering the Navier-Stokes
equations, separating the large scales to be simulated from the small scales to
be modeled:

∂ρ

∂t
+

∂ρũj

∂xj
= 0, (1)

∂ρũi

∂t
+

∂(ρũiũj + pδij)
∂xj
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∂xj
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∂xj
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∂
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(
κ
∂T̃

∂xj
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+
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∂xj
−

∂qT
j
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(
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where the filtered total energy E, pressure p, and deviatoric Newtonian stress
tensor dij of the mixture are given by

E =
p

γ̃ − 1
+

1
2
ρũkũk +

1
2
τkk, p =

ρRT̃
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− 2

3
∂ũk

∂xk
δij

)
. (6)
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The scalar ψ defines the local mixture composition between air (ψ = 0) and
SF6 (ψ = 1). The mean molecular weight is defined as a function of the respec-
tive molecular weight by 1/m̃ = ((1−ψ̃)/mair+ψ̃/mSF6). The average specific
heat ratio is given by γ̃ = c̃p/(c̃p−R/m̃), where c̃p = ((1− ψ̃)cp,air + ψ̃cp,SF6).
Temperature-dependent transport properties of the mixture, i.e. viscosity μ,
heat conduction κ, and diffusivity D̃, obey usual binary mixing rules and pure
component mixing properties. Hereinafter, filtered and Favre-filtered quanti-
ties are identified with resolved-scale quantities computed in the LES, and
overbars and tildes are voluntarily ignored.

2.2 Application of the Stretched-Vortex Subgrid Model

While conventional LES models generally consider only resolved-scale trans-
port, and do not attempt to capture the small-scale mixing process between
the two fluids, the stretched-vortex subgrid-scale (SGS) model [8] extended to
compressible flows [9] and subgrid scalar transport [10] is based on an explicit
structural modeling of small-scale dynamics. It utilizes stretching vortices as
the essential subgrid element in the closure of Favre-filtered Navier-Stokes
equations by providing the subgrid stress tensor τij , the turbulent tempera-
ture flux qT

i , and the mixture fraction flux qψ
i (see [2] for detailed expressions

of the subgrid tensors). In this model, the flow within a computational grid
cell results from an ensemble of straight, nearly axisymmetric vortices aligned
with a direction obtained from a weighting of local resolved-scale vorticity
and strain rate orientations. The subgrid spiral vortices are local approximate
solutions of the Navier-Stokes equations [11] and the scalar transport equa-
tions [12]. Note that the structural nature of this model has also facilitated the
mathematical development of a multiscale treatment of the activity beyond
the resolution cut-off and predictions of subgrid mixing properties [2].

3 Computational Approach

3.1 AMROC Framework

The resolution requirements imposed by the physics of the flow vary greatly
both spatially and temporally for this simulation. The parallel block-structured
adaptive mesh refinement framework AMROC developed by Deiterding [13]
proves to be decisive for the converging RMI, where the interface is expected
to travel down to the inner apex and coarse resolution is sufficient for the
outer region. Discrete conservation of mass, momentum, and energy is accom-
plished by using a flux-based conservative finite-difference approach. Figure 2
shows the mixing zone and the refinement levels used at different stages of
the simulation. The base grid ((x, y, z)-resolution of 83 × 83 × 51) is refined
twice, with factors (2, 2), such that the finest equivalent resolution would be
332× 332× 204.
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(a) (b) (c)

Fig. 2 Differently colored iso-surfaces for ψ = 75%, 50%, and 25% visualize the
evolution of the TMZ: (a) initially, (b) after the first shock interaction, (c) after
the first reshock. The gray levels on the background planes represent the domains
of different mesh refinement. Case M0 = 1.3

3.2 Hybrid Numerical Method

The numerical method is formulated for uniform Cartesian grids and is effec-
tively applied to each subgrid of the mesh hierarchy. A ghost fluid approach
[14] is utilized to numerically incorporate the non-Cartesian reflective wall
boundary conditions arising at the small cylinder regularizing the apex (cf.
Section 1.2). The overall method is an extension of the hybrid scheme by Hill
& Pullin [15] to SAMR meshes with non-Cartesian embedded boundaries. A
weighted, essentially non-oscillatory (WENO) scheme is used to capture dis-
continuities such as shock waves or fine/coarse mesh interfaces, but switches
to a low-numerical dissipation, explicit, tuned center-difference scheme (TCD)
in the smooth or turbulent regions, optimal for the functioning of explicit LES
such as the SGS stretched-vortex method. To ensure discrete numerical sta-
bility of the inviscid terms (momentum, scalar and energy convection terms),
the centered discretization is written in a stable, energy preserving formu-
lation adapted to compressible flows [16]: the TCD flux at cell walls has a
skew-symmetric form described in detail in [17].

WENO-TCD Switching Technique

Around discontinuities, the WENO scheme computes fluxes at cell walls based
on a weighted convex combination of candidate stencils that minimizes inter-
polation across shocks. For the subgrid activity to be correctly computed,
thereby assuring the quality of the LES, the use of WENO is restrained to re-
gions containing shock waves only. Instead of using purely geometrical criteria
based, for instance, on curvature of pressure and/or density (as in [15, 17] and
other hybrid methods cited within), a new WENO/TCD switching method
has been created to better extract the physical nature of the compressible
flow, therefore optimizing the use of WENO.
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To illustrate the technique, consider the local one-dimensional Riemann
problem at every cell wall of the computation domain. An approximate solu-
tion, denoted by a subscript �, can be computed using Roe-averaged quantities
from the given left state (cell center i) and right state (cell center i+ 1). Lax’
entropy conditions allow for characterizing the type of the waves u−a and u+a
(shock or rarefaction wave) connecting the right or left state from the central
state �. A shock is produced for the wave u±a if ur±ar < u�±a� < ul±al. The
strength of these inequalities is evaluated within a threshold value αLax/a�

in order to eliminate weak acoustic waves that could be easily handled by
the TCD scheme. For better efficiency and flexibility, this criterion is com-
bined with a geometrical test based on the mapping φ(θ) = 2θ/(1+ θ)2 of the
normalized pressure gradient θ = |pi+1 − pi|/|pi+1 + pi| inspired from slope-
limiting techniques. A threshold for the latter geometrical criterion is defined
by αMap.

Two and three-dimensional versions of this new switching algorithm have
been developed to treat complex configurations such as oblique waves, curved
shocks, and more general shock waves not aligned with the computational
grid. Comparisons with sensors relying on pressure fluctuations alone were
performed as verification tests on complex 1D examples (planar shock-contact
interaction with reshock, radially symmetric cylindrical and spherical converg-
ing shock-contact interaction with reshock, shock-entropy wave interaction,
colliding blast waves, vacuum test), and multi-dimensional examples as well
(planar RMI, cylindrical converging RMI, supersonic shear layer, inclined su-
personic jet). The values of αLax and αMap giving superior results to former
criteria are both around 1%.

4 Shell-Averaged Statistics

4.1 General Definitions

The natural symmetry of the problem results in defining as ‘shell’ a cylindrical
segment of radius r extending in both θ and z directions. Shell-averaged flow
quantities are presented on both the resolved and the subgrid scales. Using
brackets to denote a shell-average at position r and time t, we define for any
quantity Q(x , t):

Q(x , t) ≡ 〈Q〉(r, t) + Q′(r, θ, z, t) ≡ Q̃(r, t) + Q′′(r, θ, z, t), (7)

Q̃(r, t) ≡ 〈ρQ〉〈ρ〉 , Varρ(Q) ≡ Q̃′′2 = Q̃2 − Q̃2 =
〈ρQ2〉
〈ρ〉 −

〈ρQ〉2
〈ρ〉2 , (8)

where the tilde now represents the Favre-like shell-average. Note that its com-
putation involves first the interpolation of Cartesian fields over a shell that
can possibly cross diverse AMR patches being handled by different proces-
sors, then averaging the sampled fields. Favre-like shell-averaged statistics of
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the turbulent activity such as resolved-scale turbulent kinetic energy (TKE)
〈K〉, subgrid TKE 〈k〉 (per unit mass), resolved-scale dissipation 〈εres〉, and
subgrid energy transfer 〈εsgs〉 read as follows:

〈K〉 =
1
2
Varρ(uiui), 〈k〉 =

〈τii〉
2〈ρ〉 , 〈εres〉 =

〈d′ijS′
ij〉

〈ρ〉 , 〈εsgs〉 = −
〈τ ′ijS′

ij〉
〈ρ〉 . (9)

Turbulent intensity u′ computed from the total TKE, turbulent Reynolds
number ReT based on u′ and on the total turbulent dissipation, and turbulent
Mach number MT can be defined as

u′ =

√
2(〈K〉+ 〈k〉)

3
, ReT =

u′(u′3/(〈εres〉+ 〈εsgs〉))
〈μ/ρ〉 , MT =

u′

〈a〉 . (10)

Above shell-averaged quantities are dimensionless. The characteristic length
scale of our problem is R0. Characteristic density and speed are ρ0 and a0 =√
γairp0/ρ0 corresponding to the unshocked region of air. The characteristic

turbulent kinetic energy per unit mass is chosen as a2
0, time as R0/a0, and

turbulent dissipation as μaira
2
0/(ρ0R

2
0).

4.2 Shell-Averaged Statistics vs. Time

We define the mixing zone thickness δ and its center rc according to the
integral definitions as

δ(t) = 4
∫ rmax

rmin

(1− 〈ψ〉)〈ψ〉dr, rc(t) = 4
∫ rmax

rmin

r

δ
(1− 〈ψ〉)〈ψ〉dr. (11)

To study the statistical properties of the spike and bubble structures, we
define from 〈ψ〉 the 75%air (resp. SF6) shell mean position rs (resp. rb) as
the portion of heavy (resp. light) fluid penetrating into the light (resp. heavy)
fluid, also called spike (resp. bubble). Figure 3 shows the history of the mixing
layer growth. Sharp compressions of the mixing zone characterize the initial
shock-interface interaction and the first reshock. Each of these phases are
followed by a growth of the mixing zone. A second reshock is apparent at
a dimensionless time of approximately 2. The volume-averaged total TKE
vs. time (not shown) confirms these two reshock events, where a noticeable
amounts of vorticity and kinetic energy have been deposited across the mixing
layer. The weaker reshocks that follow (cf. Section 1.1 contribute to extend the
already thickened mixing zone further. As the mixing zone expands outwards,
the growth decelerates to finally reach a stable position, while the volume-
averaged total TKE continues to decay as well as ReT evaluated at rc (not
shown). At later times, ReT is about 10 times higher than its equivalent in
the planar case. Compared to the planar RMI (Figs. 5 and 11 of [2]), the
cylindrical converging RMI shows a stronger and longer mixing zone growth
as well as a longer decay of TKE.
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(a) (b)

Fig. 3 (a) Average TMZ center rc, bubble rb and spike positions rs, and (b) TMZ
growth rate δ, vs. time (M0 = 2.0)

(a) (b)

Fig. 4 (a) Shell-averaged density 〈ρ〉 and turbulent Mach number MT , and (b)
scalar mean 〈Y 〉 and dissipation Varρ(Y ), vs. radius (t = 3.8, M0 = 1.3)

4.3 Shell-Averaged Statistics vs. Radius at Later Times

The scalar function displayed Fig. 4(b) is defined by Y = 2ψ − 1 such that
Y ε [−1, 1]. The shell-averaged scalar variance characterizes the extent of the
TMZ, with two peaks denoting the dominant bubble and spike portions. It
is observed that compressibility effects during the evolution of the mixing
zone peak at its center and, excluding shock interaction events, late time
turbulence is weakly compressible with MT in the range 0.06–0.012 within
the TMZ (Fig. 4(a)).

Thanks to the stretched-vortex subgrid model, shell-averaged subgrid
quantities can be directly estimated. Figure 5(a) shows that later during the
TKE decay, the resolved TKE is about 50 times the subgrid TKE (∼ 10 times
in the planar case). The subgrid dissipation is of the order of 200 times its
resolved counterpart (∼ 100 times in the planar case) as shown in Fig. 5(b),
while prior to reshock it was only about 20 times larger (not shown). This
indicates that the turbulence scales fully develop only after reshock.
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(a) (b)

Fig. 5 (a) Resolved and subgrid TKE 〈K〉 and 〈k〉, and (b) resolved and subgrid
dissipation 〈εres〉 and 〈εsgs〉, vs. radius (t = 3.8, M0 = 1.3)

5 Studying the Turbulent Mixing

Other tools, such as power spectra and probability density functions (p.d.f.s),
are utilized here to study the properties and the quality of the resolved tur-
bulent flow. Velocity components, density, passive scalar, as well as subgrid
stretched vortex axis orientation angles, have been interpolated over cylindri-
cal shells going through the TMZ at radii rc (TMZ center), rb (bubbles) and
rs (spikes), at very late times.

5.1 Instantaneous One-Dimensional Spectra

Applying Fourier transforms in the periodic z-direction and averaging the
power spectrum coefficients over the θ-direction, various power spectra are
plotted as a function of the axial wavenumber kz in Fig. 6(a, b). The data
exhibits decay at highest wavenumbers approaching Kolmogorov-like k−5/3

scaling. Except for uz, minimal aliasing errors are observed at the highest
wavenumbers. A change in the numerical representation of the subgrid stress
tensors is currently being considered to solve this issue. We recall that no
explicit filtering of any kind was performed, and WENO is not used across
the TMZ. Density and scalar spectra correlate well as shown in Fig. 6(b).

5.2 Instantaneous Two-Dimensional Spectra

Using symmetries, a full cylindrical flow field can be reconstructed and any
shell of given radius r exhibits periodicity in the azimuthal direction as well as
the axial one. Considering the unfolded shell as an (s, z)-plane, with s the arc
s = rθ, a (kθ, kz)-power spectrum can be derived. Figure 7(a) shows that the
ur two-dimensional power spectrum is rather isotropic, as also observed for the
other velocity components as well as density and scalar spectra (not shown).
We can therefore legitimately assume that the turbulent flow over a cylindrical
shell has two isotropic directions, while in the planar case directions transverse
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(a) (b)

Fig. 6 (a) kz-power spectra of the velocity components ur (solid line), uθ (dotted
line), uz (dashed line); (b) density (solid line) and scalar (dashed line) (shell r = rc,
t = 8.2, M0 = 2.0)

(a) (b)

Fig. 7 ur velocity component (a) (kθ, kz)-power spectrum (physical wavenumbers
represented in arbitrary units), and (b) radial k-spectrum (shell r = rc, t = 8.2,
M0 = 2.0)

to the flow are obviously equivalent. A radial k-spectrum, with k =
√
k2

z + k2
θ ,

is displayed in Fig. 7(b) and compared to the Kolmogorov scaling k−5/3.

5.3 Instantaneous p.d.f.s of the Mixing

In order to study the inhomogeneity of the turbulent mixing due to the differ-
ent structures (spikes and bubbles), that act differently on either side of the
TMZ, we sample scalar (or mixture fraction) and density fields interpolated
over a given cylindrical shell to create the Reynolds joint density-mixture
fraction p.d.f. that follows:
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(a) (b)

Fig. 8 (a) P.d.f.s of the mixture fraction at rc (solid line), rb (dotted line), and rs

(dashed line); (b) p.d.f. of the vorticity local orientation angle with er (shell r = rc,
t = 8.2, M0 = 2.0)

P̃(ψ;x , t) ≡ 1
〈ρ〉

∫
ρP(ρ, ψ;x , t)dρ, (12)

Before reshock, the two fluids are mostly unmixed, and the p.d.f. shows two
peaks for values of the mixture fraction of 0 and 1. After the first reshock,
the p.d.f. at the shell cutting through the TMZ center rc exhibits a strong
central mode, while for the shells rb and rs, the two peaks have moved towards
the TMZ center, away from the pure fluid values 0 and 1, indicating mixing
progress. It is observed that the strength of these two regions of the TMZ
with high density gradients is sustained by the successive reshocks carrying
pressure gradients in the radial direction. The bimodal nature of the mixing
at the center of the TMZ is apparent at later times (Fig. 8(a)), but seems to
tend to a wide single mode as time evolves and reshocks become weaker.

5.4 Instantaneous p.d.f.s of the Subgrid Vortex Orientation

In order to understand the influence of the model on the turbulent properties
of the flow mixing, we study the isotropy of both vorticity and principal rate
of strain fields (cf. Section 2.2) by displaying the p.d.f. of these various angles
with respect to the local cylindrical basis (er, eθ, ez) over the rc-shell. Results
demonstrate that the principal strain rate at the TMZ center is somewhat
anisotropic in the radial direction er (not shown), while the vorticity orientates
isotropically as shown for example for the vorticity radial orientation αω

r in
Fig. 8(b) (similar results not shown here apply to the two other angles). Recall
that for an isotropic distribution of angles α with respect to a fixed axis, the
corresponding p.d.f. is sin(α) (dashed line in Fig. 8(b)).
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6 Conclusion

The Richtmyer-Meshkov instability with reshock has been studied in a canon-
ical cylindrical converging geometry. Compressible large-eddy simulation us-
ing the stretched-vortex subgrid model has been used to study the turbu-
lent mixing occurring between an outside light and an inside heavy fluid. A
low-dissipation tuned-centered stencil used away from shocks has allowed for
accurately computing different turbulent statistics.

The successive reshocks prove to be responsible for the intense growth of
the mixing zone. After the second reshock event, a long decay of the turbulent
energy is observed. At later times, the growth stabilizes and the turbulent
mixing zone remains weakly compressible. Various late time energy spectra
taken at the center of the mixing zone show an inertial subrange approaching
the universal k−5/3 scaling. The late time mixing in the converging geometry
exhibits a similar but somewhat less pronounced bimodal aspect than in the
planar case. The local isotropic nature of the flow has been scrutinized through
diverse statistics over cylindrical shells penetrating through the mixing layer.
Current work consists of formulating the effect of curvature on the turbulent
activity and exploring the ‘heavy to light’ converging RMI flow.
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Abstract. We apply large-eddy simulation (LES) to simulate the nonlinear evo-
lution of a subsonic circular swirling mixing layer, a round jet surrounded by slow
co-flow with an additional swirl component present only in the narrow shear layer.
The growth of viscous spatial instabilities and transition to turbulence of the swirling
mixing layer are investigated. LES results are assessed at different resolutions and
compared with reference results from direct numerical simulation (DNS).

Keywords: Large-eddy simulation, Approximate deconvolution model, Compress-
ible flow, Transition to turbulence, Swirling mixing layer

1 Introduction

Swirling mixing layers occur in many technical applications. Typical exam-
ples are leading-edge vortices on delta wings or flame holders in combustion
devices. Good mixing is crucial in designing combustion systems for different
applications. Detailed understanding of the physics of swirling jet flows and
mixing layers is essential for the development of new turbulence and mix-
ing models. To improve the understanding of the underlying flow physics,
substantial research efforts have been undertaken in the past decades. These
efforts primarily aimed at modeling basic elements of swirling motion and to
determine the associated stability characteristics. The addition of swirl can
enhance the mixing of circular mixing layers and jet flows. In the present in-
vestigation, the predictive capability of large-eddy simulation (LES) is studied
for transition to turbulence in a subsonic swirling circular mixing layer.

Transitional and turbulent flows support a wide range of temporal and spa-
tial scales of motion. As a consequence, accurate simulation methodologies are
required to reliably predict the flow. In direct numerical simulations (DNS),
all scales of turbulence are numerically resolved, while in Reynolds-averaged
Navier-Stokes computations (RANS) all scales of turbulence are modeled. In
LES, the large-scale motion of a transitional or turbulent flow field is resolved
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c© Springer Science+Business Media B.V. 2008



296 S.B. Müller, L. Kleiser

wb
2

wb
1

r
z

θ
V b

max

Fig. 1 Swirling mixing layer configuration

and the effects of the small, unresolved scales on the large ones are modeled.
The subgrid-scale modeling strategy is based on the idea that the large scales
are primarily dependent on the geometry as well as a few important integral
characteristics, while the small scales tend to be more universal and are there-
fore expected to be modeled more easily. LES aims to bridge the gap between
expensive DNS, which are limited to moderate Reynolds numbers, and RANS,
which need (sometimes heavily complex) turbulence models that sometimes
fail to predict turbulent flows accurately and are often inappropriate for the
analysis of transitional and turbulent flows. The investigation of such flows
using LES comprises an important research activity for the engineering sci-
ences. In this contribution, we present LES results using the approximate
deconvolution model (ADM) [13] as subgrid-scale closure. LES results are as-
sessed at different resolutions and compared with reference results from direct
numerical simulation (DNS).

2 Simulation Methodology

Figure 1 illustrates the flow configuration under consideration. It consists of a
subsonic circular swirling mixing layer, i.e. a round jet surrounded by slow co-
flow with an additional swirl component which is present only in the narrow
shear layer. Our results have been obtained with a highly accurate code for
DNS (and LES) solving the (filtered) Navier-Stokes equations for compress-
ible flow in cylindrical coordinates. We consider the nonlinear disturbance
development and transition to turbulence of the laminar layer perturbed at
the inflow by viscous spatial instabilities obtained from linear theory. Swirling
mixing layers at Mach number Ma = 0.8 are investigated. The Reynolds num-
ber of the flow under consideration is chosen as Re = 5000 (using the jet radius
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and centerline values as reference quantities). The maximum swirl velocity is
set to V b

max = 0.4.
Our DNS/LES code relies on the conservative formulation of the com-

pressible Navier-Stokes equations expressed in cylindrical coordinates and a
mapping from Cartesian to cylindrical coordinates is employed. This elimi-
nates problems related to the specific numerical treatment of additional cen-
trifugal and Coriolis force terms that arise in other (e.g. weakly conservative)
formulations.

At the inflow plane, Dirichlet boundary conditions are applied on all five
conservative variables to precisely define the time-dependent inflow. In ad-
dition, a damping sponge zone is imposed to absorb any upstream-traveling
acoustic disturbances. At the radial and outflow boundaries non-reflecting
conditions (accounting for the curvilinear radial boundary) are employed and
supplemented by sponge layers to enforce ambient values for pressure and
density. The inflow forcing is based on the superposition of viscous spatial
linear instabilities consisting of individual wavelike solutions of the form

q̂(r) exp {i · (αz + nθ − ωt)} ,

where q̂ is the complex eigenfunction, α = αr + iαi the complex streamwise
wavenumber, n the azimuthal wavenumber and ω the circular frequency. For
the base flow type under consideration, inviscid [7] and viscous [10] linear
stability investigations have been performed. The present simulations employ
an axisymmetric (n = 0) and two helical n = 1 instabilities with positive and
negative circular frequency. Additional simulations were performed to analyze
the swirl-enhanced mixing behavior using different combinations of instability
waves [9].

The DNS results have been validated by employing two different high-order
discretization schemes at otherwise identical resolution and boundary condi-
tions. One simulation employs up to tenth-order (at interior points) compact
central schemes [6] for spatial dicretization of the convective as well as diffusive
terms, yielding an overall fourth-order scheme. These central compact schemes
are combined with a secondary filter Q̂5Ĝ after every other time step to ensure
numerical stability. The other simulation relies on upwind-biased schemes [1]
for the convective terms instead of compact central schemes. The secondary
filtering is not used in this simulation. For the LES, convective as well as
diffusive terms are discretized with up to tenth-order (at interior points) com-
pact central schemes [6], yielding an overall fourth-order scheme. In the az-
imuthal direction a Fourier spectral method is employed. Secondary filtering
or upwind-biased schemes are not used in the LES. For time advancement
the LDDRK scheme by Berland et al. [3] is used to provide an efficient and
accurate low-storage integration scheme. A necessary condition for a stable
time integration is that the eigenvalues of the spatially discretized linearized
Navier-Stokes equations lie within the stability domain of the Runge-Kutta
scheme. This stability criterion is maintained by an appropriately chosen time-
step size derived from the scalar model advection-diffusion equation [9]. Near
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the polar axis the azimuthal grid spacing becomes excessively fine. To avoid
unnecessarily small time steps, the number of retained Fourier modes is lin-
early reduced towards the pole. For further details concerning the numerical
simulation methodology we refer to [9] and [11].

The size of the computational domain is Lz×Lr = 24×10. The resolution
of our DNS is Nr×Nθ×Nz = 255×150×445 grid points while the LES employ
Nr×Nθ×Nz = 87×40×187 (LES-Low) and Nr×Nθ×Nz = 109×60×235
(LES-High) grid points, respectively. These spatial LES resolutions correspond
to approximately 3.8% and 9% of the spatial DNS resolution. The computa-
tional mesh is refined in the radial and the axial direction by coordinate
transformations following the work of Bayliss et al. [2] and Bodony [4]. The
grid density distribution in the axial direction consists of three major sections:
a gradual refinement covering the initial transitional region, followed by a uni-
form grid region towards the subsequent turbulent region, and a moderate grid
coarsening in the outflow-boundary zone. In the radial direction a specific re-
quirement on a transformation arises from the singularity treatment according
to [8] which is adopted in the present work and demands that the mapping is
smooth and symmetric with respect to r = 0. It is apparent that the region
around the shear layer imposes the most stringent resolution requirement on
the radial grid distribution.

As subgrid-scale closure we employ the ADM subgrid-scale model, see [13].
The relaxation parameters χρ,χρu, and χE have been chosen to be constant
in space and time. Case LES-Low was performed using ad-hoc values χρ =
χρu = χE = 111(= 1/Δt). Case LES-High was performed with the values:
χρ = 50(= 0.5/Δt), χρ = 75 = (0.75/Δt) and χρ = 100(= 1/Δt), and χρ ≡
χρu ≡ χE , respectively. The results corresponding to LES-High are based on
a value of 100 for the relaxation parameters unless stated otherwise.

3 Results

The computational time for each LES is documented in Table 1 together
with corresponding values for the DNS, demonstrating that LES computations
require only a fraction (≈1–2%) of the computational cost of a DNS.

An overview of the instantaneous flow behavior is provided by λ2-isosurface
visualizations in Fig. 2. As can be seen the large-scale behavior in the

Table 1 CPU time of direct and large-eddy simulations (NEC SX-5, CSCS)

Case Time (h)

DNS using upwind-biased scheme [1] 1459

LES using ADM, high resolution (LES-High) 27.6

LES using ADM, low resolution (LES-Low) 12.6
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(a)

(b)

(c)

Fig. 2 Visualization of the instantaneous flow field using the second invariant
(λ2 = −0.05) for LES and DNS. (a) Case LES-Low; (b) case LES-High; (c) DNS

transitional region is very close to the DNS for both LES cases. Note that
the slightly chiseled appearance of the isosurface for the LES is due to the
visualization on the coarse grids.

Statistical averaging was performed in time over the same sampling period
as in the DNS. A total of 1400 DNS flow fields were interpolated onto the
respective LES grid and filtered with the primary filter Ĝ. All statistics are
based on these particular filtered fields. Errors due to a spline interpolation
in the radial and axial directions of the DNS flow fields are attenuated by
application of the primary filter.
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Fig. 3 Axial development of mean flow. Dashed lines: LES-Low/LES-High, solid
line: DNS using upwind-biased schemes [1] interpolated onto LES grid and filtered
using primary filter. (a), (c), (e): Favre-averaged axial and azimuthal velocity and
temperature, case LES-Low. (b), (d), (f): Favre-averaged axial and azimuthal ve-
locity and temperature, case LES-High

Figure 3 shows the Favre-averaged axial and azimuthal velocity and the
temperature. A total of nine downstream positions have been chosen as doc-
umented in Table 2. The overall agreement is already quite acceptable in case
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Table 2 Downstream positions zi of statistical data evaluations

i 1 2 3 4 5 6 7 8 9

zi 0.00 5.50 6.50 7.50 10.5 13.0 15.5 17.0 20.0

LES-Low, but further improved in case LES-High. The RMS of the axial and
azimuthal velocities as well as temperature are shown in Fig. 4. Clear im-
provements are observed for case LES-High and for the most part of these
statistics the LES-High results were identical with DNS within line thickness.
Slight discrepancies between LES and filtered DNS continue to be visible in
the turbulent kinetic energy, Reynolds shear stresses and velocity-temperature
correlations [9].

We specifically considered the downstream development of the axial ve-
locity along the centerline as this location was prone to the largest differences
in the two DNS computations (see also [9]). Figure 5 displays the mean ax-
ial velocity and the corresponding RMS fluctuation along the centerline for
LES-Low. Basically the mean axial velocity of the LES starts to drop down
slightly upstream of the DNS prediction and the fluctuations become larger
starting in the breakdown region z ≈ 10. For case LES-High and variations in
the value of χρ, χρu and χE , the largest differences were observed along the
centerline (Fig. 6). In the turbulent region (z ≈ 15÷ 20) the deviations from
the reference DNS data are most pronounced for the mean axial velocity and
the corresponding RMS fluctuation. For smaller values of χρ, χρu and χE , the
RMS values become increasingly higher within this region. The differences can
be attributed to variations in the parameter as this was the only modification
done for the LES simulations.

An additional comparison between LES-High and filtered DNS data was
performed for the two-point correlation defined by

Rq(z0, η) =

〈
q
′
(z0)q

′
(z0 + η)

〉
〈
q′2(z0)

〉1/2 〈
q′2(z0 + η)

〉1/2
,

where q is an arbitrary quantity, ′ denotes its temporal and azimuthal fluctua-
tion, and η is the separation distance. Figure 7 displays two-point correlations
for the radial, azimuthal and axial velocity as well as for the pressure fluctu-
ations. Values are averaged in time and azimuthal direction. The comparison
shows excellent agreement.

The downstream development of the temporal Fourier amplitudes of the
three instabilities excited at the inflow has been analyzed and compared to
filtered DNS data. In Fig. 8 we show this modal growth for the three distur-
bances as well as their higher harmonics. The comparison of LES-High to the
filtered DNS data shows quite satisfying agreement. Even the growth of the
disturbance generated by the nonlinear product of the instabilities and with a



302 S.B. Müller, L. Kleiser

 0
 0.05

 0.1
 0.15

 0.2

 3 1.5 0

z ↑

r

〈 w
′′
2
〉 1/

2

 0
 0.05

 0.1
 0.15

 0.2

 3 1.5 0

z ↑

r

〈 w
′′
2
〉 1/

2

(a)

(b)

 0

 0.05

 0.1

 0.15

 0.2

 3 1.5 0

z ↑

r

〈 v
′′
2
〉 1/

2

 0

 0.05

 0.1

 0.15

 0.2

 3 1.5 0

z ↑

r

〈 v
′′
2
〉 1/

2

(c)

(d)

 0

 0.005

 0.01

 0.015

 0.02

 3 1.5 0

z ↑

r

〈 T
′′
2
〉 1/

2

 0

 0.005

 0.01

 0.015

 0.02

 3 1.5 0

z ↑

r

〈 T
′′
2
〉 1/

2

(e)

(f)

Fig. 4 Axial development of RMS fluctuations. Dashed lines: LES-Low/LES-High,
solid line: DNS using upwind-biased schemes [1] interpolated onto LES grid and
filtered using primary filter. (a), (c), (e): RMS of axial and azimuthal velocity and
of temperature, case LES-Low. (b), (d), (f): RMS of axial and azimuthal velocity
and of temperature, case LES-High

frequency corresponding to the sum or difference of the primary instabilities
is in good agreement with the filtered DNS data. Only the higher harmon-
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Fig. 6 Axial development of mean and RMS velocity. Solid line: DNS using upwind-
biased schemes [1] interpolated onto the LES grid and filtered using primary filter.
Dotted line: LES-High using χρ = χρw = χE = 50, dashed line: LES-High using
χρ = χρw = χE = 75, dashed-dotted line: LES-High using χρ = χρw = χE = 100.
(a) Mean axial centerline velocity, (b) RMS of mean axial velocity along centerline

ics show some appreciable differences although the basic growth behavior is
captured very well.

Overall we find quite good agreement between the case LES-High and
filtered DNS data for all discussed quantities. Concerning the mean flow fluc-
tuations, the case LES-Low already achieves acceptable results.

4 Conclusions

High resolution DNS data has been used to assess the predictive capability
of LES using the ADM subgrid-scale model [13] with constant (in space and
time) relaxation parameters, for which ad-hoc values were chosen. Varying
these parameters did not yield substantial differences concerning the present
LES. The computations showed acceptable or very good agreement of detailed
mean-flow and spectral statistics with filtered DNS data.
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Fig. 7 Two-point statistics at r = 1 and axial positions z0 = 2 · m, m = 0 . . . 9
at r = 1. Dashed line: LES-High, solid line: DNS using upwind-biased schemes
[1] interpolated onto LES grid and filtered using primary filter. (a) Axial velocity
fluctuations, (b) azimuthal velocity fluctuations, (c) radial velocity fluctuations, (d)
pressure fluctuations

In addition to providing for subgrid energy transfer [5], the relaxation term
is beneficial in three respects related to numerical discretization. First, stabil-
ity of the compact finite-difference operators used herein for LES is ensured
(i.e. unstable eigenvalues of the spectrum corresponding to this spatial deriva-
tive operator, including the effect of mapping from computational to physical
space, are moved to the left in the complex plane). Secondly, the consecu-
tive usage of first-derivative finite-difference operators in computing diffusive
terms yields a lack of dissipation in the smallest scales [6]. The relaxation term
allows for dissipation in exactly this high-wavenumber band, i.e. in the small
scales. Finally, the magnitude of aliasing errors which arise due to nonlinear
products on a finite grid can be expected to be lower as the energy at high
wavenumbers is reduced [5]. The minimum value of each relaxation coefficient
should ensure that the stability of the finite-difference operators is ensured.
Increasing the value of the relaxation coefficients limits the time step size for
a stable integration. For problems in which a fine time step is necessary for ac-
curacy or stability to obtain e.g. highly-resolved temporal signals as required
in aeroacoustics (see, e.g., [12]) the choice of large values for the relaxation
parameters can be regarded as unproblematic.
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Fig. 8 Downstream development of Fourier amplitudes of axial mass flux. Shown are
the growth of the inflow disturbances with highest growth rate and the corresponding
first and non-linearly generated higher harmonic disturbance amplitudes. These am-
plitudes appear in a monotonic manner. Solid lines: DNS data using upwind-biased
schemes [1] interpolated onto LES grid and filtered using primary filter. ; dashed
lines: LES-High. The thin solid lines represent the growth according to spatial lin-
ear stability theory. (a) ω0 = 2.046, l · ω0; (b) ω1 = −1.652, l · ω0; (c) ω2 = 1.931,
l · ω0; l = 1, . . . , 5; (d) ω = ω0 + ω1; (e) ω = ω1 + ω2; (f) ω = ω0 − ω2

Acknowledgments

The computations were performed at the Swiss National Supercomputing
Center (CSCS) Manno. We would like to thank our colleagues at the Institute
of Fluid Dynamics for stimulating discussions.



306 S.B. Müller, L. Kleiser

References

1. Adams NA, Shariff K (1996) A high-resolution hybrid compact-ENO scheme
for shock-turbulence interaction problems. J Comput Phys 127(1):27–51

2. Bayliss A, Class A, Matkowsky BJ (1995) Adaptive approximation of solu-
tions to problems with multiple layers by Chebyshev pseudo-spectral methods.
J Comput Phys 116(1):160–172

3. Berland J, Bogey C, Bailly C Low-dissipation and low-dispersion fourth-order
Runge-Kutta algorithm. Comput Fluids 35(10):1459–1463

4. Bodony DJ (2004) Aeroacoustic prediction of turbulent free shear flows. PhD
thesis, Stanford University

5. Domaradzki JA, Adams NA (2002) Direct modelling of subgrid scales of tur-
bulence in large eddy simulations. J Turbul 3, Art no 24

6. Lele SK (1992) Compact finite difference schemes with spectral-like resolution.
J Comput Phys 103(1):16–42

7. Lu G, Lele SK (1999) Inviscid instability of compressible swirling mixing layers.
Phys Fluids 11(2):450–461

8. Mohseni K, Colonius T (2000) Numerical treatment of polar coordinate singu-
larities. J Comput Phys 157(2):787–795

9. Müller SB (2007) Numerical investigations of compressible turbulent swirling
jet flows. Diss. ETH No. 17375, ETH Zurich, Zurich, Switzerland. Available
online from http://e-collection.ethbib.ethz.ch

10. Müller SB, Kleiser L (2006) Viscous and inviscid spatial stability analysis of
compressible swirling mixing layers. Submitted

11. Müller SB, Kleiser L (2007) Large-eddy simulation of vortex break-
down in compressible swirling jet flow. Comp Fluids, to apppear.
doi:10.1016/j.compfluid.2007.04.010

12. Singh KK, Mongeau L, Frankel SH, Gore JP (2007) Effect of co- and counter-
swirl on noise from swirling flows and flames. AIAA J 45(2):651–661

13. Stolz S, Adams NA, Kleiser L (2001) The approximate deconvolution model for
LES of compressible flows and its application to shock-turbulent-boundary-layer
interaction. Phys Fluids 13(10):2985–3001



Accuracy of Large-Eddy Simulation
of Premixed Turbulent Combustion

A. W. Vreman1,2, R. J. M. Bastiaans1, and B. J. Geurts3,4

1 Combustion Technology, Department of Mechanical Engineering
Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The
Netherlands. R.J.M.Bastiaans@tue.nl

2 Vreman Research, Godfried Bomansstraat 46, 7552 NT Hengelo, The
Netherlands

3 Mathematical Sciences, University of Twente, PO Box 217, 7500 AE Enschede,
The Netherlands

4 Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB
Eindhoven, The Netherlands

Abstract. The accuracy of large-eddy simulation (LES) of a turbulent premixed
Bunsen flame is investigated in this paper. To distinguish between discretization
and modeling errors, multiple large-eddy simulations, using different grid size h
but the same filterwidth Δ, are compared with the direct numerical simulation
(DNS). In addition, large-eddy simulations using multiple Δ but the same ratio
Δ/h are compared. The chemistry in the LES and DNS is parametrized with the
standard steady premixed flamelet for stochiometric methane-air combustion. The
subgrid terms are closed with an eddy-viscosity or eddy-diffusivity approach, with
an exception of the dominant subgrid term, which is the subgrid part of the chemical
source term. The latter subgrid contribution is modeled by a similarity model based
upon 2Δ, which is found to be superior to such a model based upon Δ. Using the 2Δ
similarity model for the subgrid chemistry the LES produces good results, certainly
in view of the fact that the LES is completely wrong if the subgrid chemistry model is
omitted. The grid refinements of the LES show that the results for Δ = h do depend
on the numerical scheme, much more than for h = Δ/2 and h = Δ/4. Nevertheless,
modeling errors and discretization error may partially cancel each other; occasionally
the Δ = h results were more accurate than the h ≤ Δ results.

Keywords: Large-eddy simulation, Accuracy tests, Turbulent combustion, Pre-
mixed flamelets

1 Introduction

Large-Eddy Simulation (LES) of combustion as research topic has gained an
increasing amount of attention in recent years. The subject is complicated,

J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, 307
c© Springer Science+Business Media B.V. 2008
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because questions regarding LES methodology and modeling issues related to
chemistry need to be considered simultaneously. In order to be able to perform
three-dimensional time-dependent simulations of turbulent flows with com-
bustion, it is usually not realistic to solve transport equations for all species
occurring in the chemical reaction process. Therefore, it is common to apply
a reduction technique to limit the number of transport equations that need to
be carried in three dimensions. One group of reduction techniques is formed
by the flamelet approaches [1, 2, 3, 4, 5, 6]. In flamelet approaches, results
from one-dimensional computations with detailed chemistry (flamelets) are
mapped to one or a few representative variables. Subsequently, the mapping
functions, which are represented by a one- or multidimensional table, are used
in the three-dimensional computation of a specific application.

LES of turbulent combustion is complicated, because in most cases neither
turbulent structures nor the thickness of the flame can be properly resolved
on the computational mesh. Thus, in addition to subgrid modeling of the
turbulence, subgrid modeling of the chemical reaction process, which appears
in the equations as one or more nonlinear source-terms, needs to be considered.
The purpose of the present paper is to develop LES for turbulent combustion
further and to study its accuracy. For the latter purpose we follow the strategy
proposed in Ref. [7] (and revisited for example in Ref. [8]) and perform LES
for multiple mesh sizes h ≤ Δ, where the filterwidth Δ is held fixed. Modeling
and discretization errors are thus separated, since discretization errors reduce
if h is reduced and Δ, the length-scale of the smallest resolved structures in
the simulation, is kept constant.

To test LES of turbulent combustion we have chosen a premixed Bunsen
flame, similar to experiments by Filatyev et al. [9] and simulations by Bell et al.
[10]. The size of the flame is somewhat smaller in our case, to enable well-
resolved Direct Numerical Simulation (DNS) with moderate computational
effort. In the present paper both DNS and LES assume flamelet chemistry,
but unlike LES, the DNS resolves both flame thickness and turbulence down
to the Kolmogorov length-scale. Therefore the DNS does not require subgrid
modeling, and it can be used to test and develop LES models.

The outline of the paper is as follows. In Section 2 we specify the governing
equations, the approach of subgrid modeling, and the numerical discretization.
In Section 3 results are shown for the premixed Bunsen flame and LES is
compared to DNS. Conclusions are summarized in Section 4.

2 Computational Method

2.1 The Unfiltered Equations

The Navier-Stokes equations with parametrized premixed chemistry read:
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∂ρ

∂t
+

∂ρuj

∂xj
= 0, (1)

∂ρui

∂t
+

∂ρuiuj

∂xj
= − ∂p

∂xi
+ 2

∂μSij

∂xj
, (2)

∂ρc

∂t
+

∂ρujc

∂xj
=

∂

∂xj

(
ρD

∂c

∂xj

)
+ ωc, (3)

ρ = f1(c), (4)
T = f2(c), (5)
ωc = f3(c), (6)

where the summation convention over repeated indices is used, while ρ, u, p, T ,
and c represent density, velocity vector, pressure, temperature, and progress
variable. The progress variable is based upon the scaled mass fraction of O2

and is scaled such that it equals zero in the unburnt and one in the burnt
regions. This mass fraction is selected as progress variable because, unlike
many other species (CO2 for example), the mass fraction of O2 satisfies the
requirement of strict monotonicity on the entire flamelet. The functions fj

(plotted in Fig. 1) denote the quantities that are retrieved from the flamelet
database. The flamelet database is composed of a single flamelet, obtained
by solving the premixed flamelet equations with detailed chemistry using the
GRI 3.0 reaction scheme for a stoichiometric methane-air mixture [3].

It is remarked that T is almost reversely proportional to ρ; T is prescribed
by the combustion approximation, an approximate equation of state [3]. In
addition the rate of strain is defined by

Sij = 1
2

( ∂ui

∂xj
+

∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
, (7)

while the viscosity μ is a function of temperature according to Sutherland’s
three-coefficient law. The thermal diffusivity is equal to

λ/cp = 2.58 · 10−5(T/298 K)0.69, (8)

where λ is the thermal conductivity and cp the specific heat [11]. The diffu-
sivity ρDc is equal to λ/cp divided by the Lewis number of O2 (1.11).

2.2 Subgrid Modeling

Whereas DNS with flamelet chemistry solves the unfiltered equations, LES
solves the filtered equations. The basic filter definition in LES is given by
ρ = Gρ, where G is the filter operator, a convolution integral operator with
top-hat filter kernel with width Δ. In variable density flows it is convenient
to use the density-weighted or Favre filter as well, defined by ũi = ρui/ρ.

The filtered equations are obtained by application of the basic filter op-
erations to the equations in the previous subsection. The nonlinearities in
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Fig. 1 Visualization of the flamelet database (functions fi(c)): density (a), temper-
ature (b) and chemical source term (c)

the equations lead to unknown terms, which are either modeled, or neglected.
Subgrid terms arising from the nonlinearity of the viscous terms are neglected,
while the subgrid terms arising from the convective terms are closed by adding
an eddy-viscosity μt to the molecular viscosity in the momentum equations
and an eddy-diffusivity μt/Sct with Sct = 0.4 [4] to the molecular diffusivity
in the scalar equation. For the eddy-viscosity the following model is used [12]:

μt = ρC
(β11β22 − β2

12 + β11β33 − β2
13 + β22β33 − β2

23

αklαkl

)1/2

. (9)

Here the tensor β equals the gradient model:

βij = Δkαkiαkj , αki =
∂ũi

∂xk
, (10)

where Δk is the filterwidth in direction xk; Δ1 = Δ2 = Δ3 = Δ is used
throughout this paper. The model constant is related to the Smagorinsky
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constant C = 2.5C2
S ; in this work we take C = 0.07. Model (9) has shown to

be as accurate as the dynamic subgrid model in non-reacting wall-bounded
and free shear flow [12].

Due to the nonlinearity of the chemical parametrization (nonlinearities in
f1 to f3), non-standard subgrid terms arise, fi(c) − fi(c̃). Geurts [13] pro-
posed to model these non-standard terms with approximate deconvolution.
Here we use a similar strategy, but in order to compensate for the fact that
a deconvolution retrieves resolved scales only, we slightly alter the common
methodology and apply the deconvolution at a larger scale; the filterwidth of
the ‘inverted’ filter H now equals 2Δ. Thus the unknown quantities fi(c) are
modeled by

Hfi(2c̃−Hc̃), (11)

where H is the top-hat filter with filterwidth 2Δ. In fact the quantity between
brackets can be expressed as c = c̃ + c′′ in case the subgrid fluctuation c′′

is modeled by c̃ − Hc̃. This is a scale-similarity hypothesis [14], and thus
Eq. (11) is essentially a similarity model. However, c̃ − Hc̃ is also the first
term in the series expansion of the deconvolution operator [15]. To extend the
deconvolution, more terms may be added to approximate c, but we do not
pursue this here.

2.3 Numerics

We used a straightforward and efficient numerical implementation to solve
the equations with parametrized chemistry. The variable density approach in-
volved a Poisson equation for the pressure, similar to other low-Mach methods
[4, 5].

For the continuity and momentum equations the standard finite volume
method was employed, with second-order central differencing on a staggered
Cartesian mesh. The discrete convective terms would conserve kinetic en-
ergy if the density were constant. Because of its stability properties a hybrid
time-stepping scheme was used to integrate the moment equations, Adams-
Bashforth for the convective and forward Euler for the viscous terms.

The scalar equation was recast into the equivalent advective formulation.
Then the Van Leer third-order accurate MUSCL scheme, which is TVD, was
applied to the advective terms. Thus the spatial discretization of the scalar
equation introduced numerical diffusion, which was not the case in the mo-
mentum equations. However, for the scalar equation numerical diffusion is
hard to avoid if we want to keep the scalars in between their physical bounds
on coarse grids. The scalar was updated with pure forward Euler since for an
upwind method the hybrid time-stepping scheme has less advantages than for
central differencing (used in the momentum equation).

Within each time-step the scalar equation was updated first. The explicit
filter H that occurs in the model for the reaction terms was discretized with
the Simpson rule. Then the momentum equations were updated to obtain the
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uncorrected velocities. Imposing the continuity equation provided then a Pois-
son equation for the pressure, which was solved using multigrid. Each timestep
ended with the correction of the velocities using the pressure gradient. More
details about the pressure correction algorithm can be found in Ref. [16].

3 Results

3.1 Flow Conditions

In this section we present DNS and LES results for a planar Bunsen flame.
The configuration of the premixed stoichiometric methane-air Bunsen flame
simulated was a spatial planar jet of the unburnt mixture (mean centerline
velocity U0 = 3m/s and T = 298K), surrounded by a co-flow with hot products
(velocity 7m/s and T = 2240K). The slot width of the burner equalled 8mm,
different from otherwise similar experiments [9] and simulations [10, 16].

The DNS was performed on a uniform grid with 320 points in the inho-
mogeneous streamwise direction (z), 256 points in the inhomogeneous normal
direction (y), and 160 points in the spanwise homogeneous (periodic) direc-
tion (x). Each grid cell was cubic and the grid size was 0.1 mm. The time
step of the DNS, δt = 0.2 · 10−5s, was verified to be sufficiently small. The
outflow boundary conditions in the normal and streamwise direction assumed
Neumann conditions for the three velocity components. The pressure satisfied
Neumann conditions at the streamwise in- and outflow, while it was held con-
stant in the normal outflow planes. The mean inflow profiles were based on
tangent hyperbolic profiles with a thickness of 0.384 mm (based on maximum
derivative).

In the experiments by Filatyev et al. [9] the inflow turbulence was gen-
erated by a suitable grid that set the length-scale of the turbulence. For the
present simulation results, the velocity at the core of the inflow was per-
turbed with random uniform noise, which was filtered to control the turbu-
lence length-scale. No inflow perturbations were added to the mean of the
progress variable. The inflow velocity perturbations were constructed such
that they were the same for each simulation in the present section, both DNS
and LES. For each velocity component, and each δt0 = 10−6s, random num-
bers between −1 and 1 were generated on the DNS inflow plane (160× 256).
Then these random numbers were filtered, applying a box-filter of l0 = 5.2mm
in the spatial directions, and a temporal exponential filter. For a signal q, the
temporal filter was discretized by

q̂n+1 = (1− δt0
√

12
l0/U0

)q̂n +
δt0
√

12
l0/U0

qn. (12)

The perturbation was initialized with q̂0 = 0. The width of this temporal
filter based on its second-order moment equals l0/U0. Subsequently, periodic
boundary conditions were imposed in both spatial directions, and then the
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Fig. 2 (a) Centerline mean streamwise velocity (solid) and streamwise (square),
normal (circle) and spanwise (triangle) turbulence intensities.
(b) Centerline Kolmogorov length-scale (solid) and Taylor micro-scales based on
streamwise (square), normal (circle) and spanwise (triangle) velocity component

Table 1 Overview of simulations

Simulation Δ h Inclusion source- Scalar δt Line in
[mm] [mm] term subgrid model clipping [10−5s] Figs. 4, 5

DNS – 0.1 – no 0.2 thick solid
LES0 0.8 0.8 no no 2.0 long dash
LES1a 0.8 0.8 yes no 2.0 thin solid
LES1b 0.8 0.4 yes no 1.0 dashed
LES1c 0.8 0.2 yes no 0.5 dash-dotted
LES1d 0.8 0.8 yes yes 2.0 thin solid
LES2 0.4 0.4 yes no 1.0 dotted

spatial filter with length l0 was performed. After the filtering, the inflow was
multiplied with 1650 (to obtain the inflow intensities mentioned later on) and
confined to the center jet (using a tangent hyperbolic function of the same
shape as the mean inflow profiles). Finally, for the large-eddy simulations, the
discrete inflow plane was injected to the simulation grid of each specific case.

The turbulence generated by these inflow conditions quickly developed,
and at z = 1mm it was characterized by a turbulent intensity of 0.6m/s,
a Taylor length-scale λ of 0.14mm, such that Reλ = 50. The Kolmogorov
length-scale at this location equalled 0.09mm, which was properly resolved by
the DNS grid. Centerline mean velocity, turbulence intensities, and turbulence
length-scales are shown in Fig. 2.

Six large-eddy simulations were performed, with uniform cubical grid cells.
An overview of these simulations is provided in Table 1. The coarsest LES was
at least three orders of magnitude less expensive than the DNS, because in
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Fig. 3 Snapshots of progress variable in the plane x = 0 at t = 0.2 s. Isocontours
0.2, 0.4, 0.6 and 0.8. DNS (a); LES1a h = Δ = 0.8 mm (b); LES2 h = Δ = 0.4 mm
(c)

each spatial direction the mesh was 8 times coarser than in the DNS and the
time-step was 10 times larger.

3.2 Comparison between LES and DNS

The LES results are discussed in the following five paragraphs. First, we dis-
cuss the LES results along the first line of grid refinement (h decreases with
Δ = h). Second, we discuss the LES-results along the second line of grid re-
finement (h decreases and Δ remains constant). Third, we demonstrate the
effect of the reaction subgrid model, by comparison with a simulation in which
reaction subgrid modeling was ignored. Fourth, we discuss and illustrate the
issue of clipping the scalar. Fifth, we explain how the results prompted us to
formulate the similarity/deconvolution model at 2Δ instead of Δ.

First, LES results along the Δ = h refinement strategy are shown in
Figs. 3 and 4a along DNS results. The snapshots (Fig. 3) show that, compared
to DNS, both the gradient of the scalar and the amount of wrinkling are
reduced in the LES. Both reduce with increasing Δ. The mean statistics of
the two large-eddy with different resolutions are remarkably similar according
to Fig. 4a, which shows time-averaged scalar contours for c = 0.75, the contour
of maximum source term (see Fig. 1c).

Second, we not only varied the mesh-size h with Δ/h held fixed (equal to
one), but we also investigated the accuracy of the LES by refining the grid
with Δ kept constant (LES1a-c), see Fig. 4b. The results of LES1b and LES1c
are almost the same, which indicates that the discretization errors are small
for these cases with h ≤ Δ/2. Thus the difference between LES1bc and DNS
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Fig. 4 Isocontour 0.75 of the mean progress variable: (a) refinement strategy Δ = h;
(b) refinement strategy with Δ held fixed, the effect of no subgrid source term is
also included here.
DNS (thick solid); LES1a (thin solid, h = Δ = 0.8 mm); LES2 (dotted, h = Δ =
0.4 mm); LES1b (dashed, h = Δ/2 = 0.4 mm); LES1c (dash-dotted, h = Δ/4 =
0.2 mm); LES0 (long dash, no subgrid source term)

is an estimate for the modeling errors. However, discretization errors are not
small in LES1a, as there is significant deviation between LES1a and the more
resolved simulations LES1bc. Surprisingly, LES1a predicts the mean source
term better than LES1bc do (Fig. 5b). This illustrates that for this quantity
the significant discretization error on the coarse grid cancels the modeling
error to some extent [7, 8].

Third, Figs. 4b and 5 show a very large effect of the subgrid modeling
of the source term. LES performed very poor when no subgrid model was
employed for the source term (LES0, where ω(c̃) was used to model ω(c));
The long-dash line in Fig. 4b shows that LES0 predicted a flame which was
much too short and hardly came off the burner, represented by the inflow
condition. The subgrid eddy-viscosity and subgrid eddy-diffusivity was still
switched on in this case.

The fourth issue in this results section addresses a nuisance of the sim-
ilarity/deconvolution model, namely that it does not garantuee that the
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Fig. 5 Centerline statistics; mean progress variable (a) and mean source term (b)
(subgrid modeling included where applicable). DNS (thick solid); LES0 (long dash,
no subgrid source term), LES1ad (thin solid, h = Δ = 0.8 mm, without and with
clipping values larger than one), LES1b (dashed, h = Δ/2 = 0.4 mm), LES1c (dash-
dotted, h = Δ/4 = 0.2 mm), LES2 (dotted, h = Δ = 0.4 mm)

maximum of the scalar remains smaller than the physical bound. Overshoots
(up to approximately 1.2) were observed, which can be inferred from the re-
sults of LES1a-c for z ≥ 0.02m in Fig. 5a. Fortunately, these overshoots appear
to have a very small effect upon the statistics. This is shown by the results of
simulation LES1d, in which the scalar was clipped after each time step and
thus forced to remain between 0 and 1. A small difference between LES1d and
LES1a can be observed in Fig. 5, while there were too small visible differences
to include this run into Figs. 4 and 5b.

Finally, it is remarked that, in order to obtain acceptable LES results on
the coarse grid, it was necessary to apply the source-term similarity model at
the scale 2Δ (and not at Δ). We shortly desribe what happened when we ap-
plied the similarity model at the scale Δ (for the case with Δ = h = 0.8mm).
Since then the filterwidth of H equalled the grid size, it was convenient to
approximate H with a truncated Taylor expansion, H ≈ I+(Δ2/24)∇2. How-
ever, the flame resulting from that simulation turned out to be even smaller
than the result of LES0, in which no model for the subgrid source term was
used. As H with filterwidth Δ appeared to be inappropriate for the present
case, we started to use H with filterwidth 2Δ. This choice turned out to be
quite beneficial. The formal justification to use 2Δ instead of Δ is that a
deconvolution can never retrieve all scales in actual LES, simply because the
finest physical scales cannot be recognized by the grid. Here we deliberately
used a deconvolution step with a ‘wrong’ filterwidth to ‘overrelax’ the scales
larger than Δ, compensating for the missing unretrievable scales. Apparently,
this was a successful strategy for the Bunsen flame application.
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4 Conclusions

Large-eddy simulations with premixed flamelet chemistry were compared with
DNS. The test-case was a premixed Bunsen flame with turbulent inflow char-
acterized by Reλ = 50. The turbulent flame was verified to be in the thin
reaction zone regime, with the inflow u′/sL0 about 1.6 and the Karlovitz
number around 16 (ratio of the gradient thickness of the progress variable
and the Kolmogorov length, u′ is the turbulent intensity, sL0 = 0.36m/s is the
laminar burning velocity). The turbulent burning velocity was about 2.5sL0.
This DNS, resolved down to the Kolmogorov scale, was used to test LES at
much coarser grids. A similarity (or first-step deconvolution model) was used
to include subgrid reaction effects. It was found to be important to apply
the similarity model at 2Δ, in order to compensate for the unretrievable sub-
grid scales. When the model was applied at the basic filterwidth, flash-back
occurred (the flame did not come off the burner, represented by the inflow con-
dition). A similar thing occurred when subgrid reaction effects were ignored
altogether. However, when they were included with the similarity model at
scale 2Δ, reasonable results were obtained. A drawback of the model is that
physical upperbound of the scalar is violated (overshoots of about 20%). How-
ever, sofar this drawback has no serious implications; an additional simulation
in which the scalar was clipped at each time-step to satisfy the physical con-
straint provided almost the same results.

The accuracy of LES was investigated in detail. Two types of grid refine-
ments were considered: grid refinement where both h and Δ were decreased;
and grid refinement where h was decreased and Δ stayed constant. The first
type of grid refinement altered the mean scalar statistics only slightly. The
second type of grid refinement, which had larger effect, serves to distinguish
between discretization and modeling errors. It appeared that discretization er-
rors had considerable influence for h = Δ, but not necessarily a bad influence,
since for the chemical source term for example, the results for h = Δ were
closer to the DNS than for h = Δ/2. Results for h = Δ/2 and h = Δ/4 were
quite similar, which indicates that for h ≤ Δ/2 the effects of discretization
errors were small.
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Abstract. Convergence of reacting LES predictions for an aeronautical gas turbine
combustion chamber is analysed in terms of mesh resolution. To do so three fully
unstructured meshes containing respectively 1.2, 10.6 and 43.9 million tetrahedra
are used to compute this fully turbulent reacting flow. Resolution criteria obtained
from the mean velocity and reacting fields depict different convergence behaviors.
Reacting fields and more specifically combustion regimes are seen to be slightly grid
dependent while maintaining mean global combustion quantities.

Keywords: Large-eddy simulation, Turbulent reacting flows, Complex application,
Grid resolution

1 Introduction

Recent developments in large scale computer architectures allow to consider
(cf. www.top500.org) LES to predict turbulent reacting flows in gas turbine
engines. For example, a compressible LES computation for a sector of an
existing helicopter combustion chamber [1] provided insights on the reliability
of such applications. To quantify the quality of these predictions, comparisons
against RANS and experimental measurements were provided. The statistical
convergence for the mean temperature field was also addressed based on an
industrial criterion quantifying the radial temperature heterogeneities at the
exit of the burner. Even though such computations (see also [2]) show the
feasibility of complex geometry LES, studies of the sensitivity of the various
statistical fields to grid resolution, LES modeling, numerical scheme, are still
required to establish the true reliability of LES for such complex applications.

The impact of grid resolution on the simulation is considered here. To
do so, the fully compressible, multi-species reacting LES performed in [1] is
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reproduced on two other meshes yielding three fully unsteady turbulent re-
acting predictions of the same configuration.The numerical scheme is second-
order accurate in time and space (Lax-Wendroff integration scheme) and the
LES models are: the Smagorinsky closure for the sub-grid stress, gradient dif-
fusion models for the species and heatflux sub-grid scale vectors with constant
turbulent Schmidt and Prandtl numbers. The turbulent combustion model is
the Dynamic Thickened Flame Model (DTF) [3, 4, 5, 6, 7]. In that case,
thickening is local and automatically obtained in the computation for a cell
to laminar flame thickness ratio fixed at 3. The three tetrahedra meshes con-
tain respectively 1.2, 10.6 and 43.9 millions cells. Refinement from one mesh
to the other is primarily enforced in the primary zone where combustion oc-
curs.The three predictions are gauged against each other for various mean
flow quantities.

The paper is organized as follows. An overview of the parallel LES solver,
models and computational parameters is given. The studied configuration
is then described along with the set of Boundary Conditions (BC) and a
presentation of the three meshes used to study reacting LES. LES predictions
are analysed in Section 4 from a statistical point of view. Specific care is
devoted to the combustion quantities and the convergnce of the statistics is
assessed.

2 Numerics

The fluid considered follows the ideal gas law, p = ρ r T and es =
∫ T

0
Cp dT −

p/ρ, where es is the mixture sensible energy, T the temperature, Cp =∑N
α=1 Cp,α Yα the fluid heat capacity at constant pressure and r is the

mixture gas constant, which varies with composition and is obtained by
r = R

W = R
∑N

α=1
Yα

Wα
, where R = 8.314 kgm2/(s2K) and Wα is the molec-

ular weight of the species α. The viscous stress tensor, the heat diffusion
vector and the species molecular transport use classical gradient approaches.
The fluid viscosity follows Sutherland’s law, the heat diffusion coefficient fol-
lows Fourier’s law, and the species diffusion coefficients are obtained using a
constant species Schmidt number and diffusion velocity corrections for mass
conservation [4]. Note that throughout the work, the variations of the molecu-
lar coefficients resulting from the unresolved fluctuations are neglected so that
the various expressions for the molecular coefficients become only functions
of the filtered field [4].

The application of the LES filtering operation to the instantaneous set of
compressible Navier-Stokes transport equations with chemical reactions yields
the LES equations which need modelling for the system to be closed [8, 9].
The unresolved SGS (Sub-Grid Scale) stress tensor τij

t = ρ (ũiuj − ũiũj), is
usually addressed through the concept of SGS turbulent viscosity model and
the Boussinesq assumption [10] which reads (Smagorinsky [11]):

τij
t − 1

3
τkk

t δij = −2 ρ νt S̃ij , (1)
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with,

S̃ij =
1
2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
− 1

3
∂ũk

∂xk
δij . (2)

In Eqs. (1) and (2) S̃ij is the resolved strain tensor and νt is the SGS turbulent
viscosity. The Smagorinsky model [11] is used here and expresses νt as:

νt = (CS�)2 ‖S‖. (3)

In Eq. (3), � denotes the filter characteristic length and is approximated by
the cubic-root of the cell volume, CS is the model constant (CS = 0.18) and
‖S‖ = (2 S̃ijS̃ij)1/2.

The SGS species flux Jα
i

t
= ρ (ũiYα − ũiỸα) is modelled by use of the

species SGS turbulent diffusivity Dα
t = νt/Sc

α
t , where Scα

t is the turbulent
Schmidt number (Scα

t = 0.9 for all α). The SGS energy flux qi
t = ρ (ũiE −

ũiẼ) is also modelled by use of a thermal diffusivity along with a turbulent
Prandtl number Prt = 0.9, so that λt = ρ νt Cp/Prt:

Jα
i

t
= −ρ

(
Dα

t

Wα

W

∂X̃α

∂xi
− Ỹα V c

i

)
and qi

t = −λt
∂T̃

∂xi
+

N∑
α=1

Jα
i

t
h̃α

s . (4)

In Eq. (4) the mixture molecular weight W and the species molecular weight
Wα can be combined with the species mass fraction to yield the expression for
the molar fraction of species α: Xα = YαW/Wα. V c

i is the diffusion correction
velocity resulting from the Hirschfelder Curtis approximation [4] and T̃ is
the modified filtered temperature which satisfies the modified filtered state
equation [12, 13, 14], p = ρ r T̃ . Finally, h̃α

s stands for the enthalpy of species
α. Although the performance of the models could be improved through the
use of a dynamic formulation [12, 15, 16, 17, 18], they are considered sufficient
to address the present investigation.

The flame/turbulence interaction is modelled using the Dynamic Thick-
ened Flame (DTF) model. The model leads to a flame thickness which is
multiplied by F and more easily resolved on a coarser mesh. While in react-
ing zones, diffusion and source terms issued from the thickened reaction are
well resolved and turbulence is solely represented by the efficiency function
E [19], molecular and thermal diffusion cannot be over-estimated by a factor
F in mixing zones where no combustion occurs (it would yield over-estimated
mixing and wrong flame positions). Dynamic thickening is introduced to ac-
count for these points [4, 5, 6, 7, 20]. The baseline idea of the Dynamic Thick-
ened Flame model (DTF) is to detect reaction zones using a sensor S and
to thicken only these reaction zones, leaving the rest of the flow unmodified.
Thickening, which is proportional to the grid resolution, locally adapts the
combustion process to reach a numerically resolved flame front which affects
the flame wrinkling and interactions at the SGS level are supplied by the
efficiency function [4, 5, 6, 7, 20].
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Dealing with reacting fluids, modelling of the chemical kinetics needs also
to be supplied. For simplicity, a one-step chemistry model (Eq. (5)) is derived
for C10H16 based on a detailed model of C10H16/Air combustion with 43
species and 174 steps (Turbomeca private communication).

C10H16 + 14O2 −→ 10CO2 + 8H2O. (5)

The reduced one-step scheme guaranties proper flame speed predictions
only in the lean regime (i.e. with equivalence ratios, Φ < 1). For the target
configuration, such a chemical scheme is not sufficient to predict proper flame
position since the local equivalence ratio reaches a wide range of values. To
circumvent such a shortcoming the pre-exponential constant of the one-step
scheme is adjusted versus local equivalence ratio to reproduce the proper flame
speed dependency on the rich side [21]. The final expression for the rate of
reaction is,

Q̇ = A(Φ)
(
ρ YC10H16

WC10H16

)n1
(
ρ YO2

WO2

)n2

exp(
−Ta

T
) (mol. m−3 s−1), (6)

where n1 = 1.5, n2 = 0.55, Ta = 3608.4 K and the A(Φ) function is A(Φ) =
3.84 1014

2 (1+tanh(1.39−Φ
0.26 ))+ 0.33

4 (1+tanh(Φ−1.6
0.8 ))(1+tanh(1.85−Φ

0.8 )). The ad-
justed one-step scheme matches the detailed scheme reasonably well in terms
of flame speed and adiabatic temperature for premixed laminar flames at
8 bar, which is the target pressure for the full combustor.

3 Target Configuration

The configuration (Fig. 1) corresponds to a helicopter combustion chamber
where fuel is injected using an inverted cane injection system, also called pre-
vaporizer [1]. The computational domain focuses on a 36 degree section of a
full annular reverse-flow combustion chamber designed by Turbomeca (Safran
group). A premixed gaseous mixture of C10H16 enters the chamber through
the pre-vaporizer, Fig. 1. Fresh gases are consumed in the primary zone, de-
limited by the chamber dilution holes and the liner dome of the combustion
chamber, Fig. 1. To ensure full combustion, this region of the chamber is fed
with air by primary jets located on the inner liner, Fig. 1. Burnt gases are then
cooled by dilution jets or cooling films located on the inner and outer liners
as well as on the return bend of the combustion chamber. Multi-perforated
plates also ensure local wall cooling in areas of the chamber shown on Fig. 1.
The operating point corresponds to cruising conditions and is the same for
the three grids.

Grid characteristics are summarized in Table 1 in terms of number of cells,
points and minimum/maximum cell volumes. The meshes are refined in the
primary zone, particularly in the lower part where combustion occurs, and
in the regions of cooling films. The Navier-Stokes Characteristic Boundary



LES of a Gas Turbine Chamber 323

Fig. 1 Computational domain of the helicopter chamber considered in this work

Table 1 Mesh characteristics used for the coarse, the intermediate and fine LES
meshes

Coarse mesh Intermediate mesh Fine mesh

Total number of points 230, 118 1, 875, 835 7, 661, 005
Total number of cells 1, 242, 086 10, 620, 245 43, 949, 682
Max. cell volume [m3] 3.12671 10−8 8.97802 10−9 4.05748 10−9

Min. cell volume [m3] 1.81795 10−11 8.29479 10−12 1.1828 10−12

Time step [s] 1.52 10−7 0.92 10−7 0.49 10−7

CPU-hour effort for a 10 ms LES 277 9, 164 35, 630

Conditions (NSCBC) [22, 23] are applied on inlet and outlet BC’s to control
the acoustic behavior of the system. Walls are adiabatic and are treated with
a turbulent law-of-the-wall to take into account boundary layer effects. Side
boundaries of the computational domain are axi-periodic.

4 Results

Although grid dependency of LES predictions is often presented in the con-
text of reacting and non-reacting simple laboratory flows [24, 25, 26], it is
usually not addressed for LES of real configurations especially when dealing
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with reacting systems. In the following section, the statistics issued by the
three LES of a helicopter chamber are presented. Assessment of resolution
criteria based on the velocity predictions are presented and their convergence
is analysed. Combustion quantities are then gauged in a similar manner.

4.1 Convergence of the Mean Fields

Turbulent reacting LES is usually evaluated through comparisons against DNS
or experimental results. Prior to this modelling performance assessment, mean
flow quantity dependency on the grid resolution is paramount. It is often
observed that first mean moments become rapidly grid independent while
resolved fluctuating fields will also converge but for higher grid resolutions.
When dealing with complex industrial configurations, experimental data are
not available and assessing the quality of LES becomes particularly difficult.
First, flow scales cover a larger range of dimensions when compared to experi-
mental rigs and this dependency is expected to be accentuated if dealing with
reacting flows. Indeed, combustion regimes are difficult to identify a priori
since they strongly rely on the local flow scales and the local mixing state it-
self dependents on the turbulent velocity field. Grid dependency is even more
critical for these applications.

An alternative to experimental measurements used to assess LES pre-
dictions stems from the comparaison of the energy content at the resolved
and sub-grid scales [24]. Likewise, ratios between the resolved fluctuating and
resolved mean fields may be used. In that case, only convergence and grid
dependency of the predictions can be evaluated and modelling performance
becomes secondary although critical from a purely scientific point of view.
Knowing the degree of grid dependency of a turbulent reacting industrial flow
LES is still important and ideally modelling performances should be assessed
once grid independence is reached. That last issue is the subject of the fol-
lowing analysis.

Impact of the grid resolution is first investigated for the mean velocity field.
To do so the following ratio is constructed based on the temporally averaged
LES results for the three meshes,

ME =
ksgs

ksgs + kres
. (7)

In Eq. (7), ksgs stands for the mean sub-grid turbulent kinetic energy and
kres = 1

2 〈(ũi − 〈ũi〉T )(ũi − 〈ũi〉T )〉T is the mean resolved kinetic energy with
〈〉T denoting the temporal average. For that criterion to be computed, an ad-
ditional closure is needed to evaluate ksgs. Here the relation νt = CMΔ

√
ksgs

is used along with the SGS turbulent viscosity given by the classical Smagorin-
sky model [11] and CM is a constant value [8]. For non-reacting flows, 15–20%
of the total turbulent kinetic energy should be contained in the sub-grid scales
for the velocity model to operate suitably [24].



LES of a Gas Turbine Chamber 325

Figure 2 presents the spatial distribution of ME , Eq. (7), supplemented by
an isoline corresponding to the 20% limit. Clearly, most of the three compu-
tational domains satisfies the resolution criterion. Higher limits are reached
in the wall regions, the guiding jet vanes and the pre-vaporizing canes. The
primary zone, where combustion is expected, is well resolved on all meshes.

Figure 3 shows the volumetric mean value of ME (denoted by 〈ME〉) as a
function of the mean cell volume for the three computational domains. The
evaluations confirm the previous findings and they are below the 20% line
which confirms the predictions in a mean sense. Convergence behavior is also
seen and an asymptotic state is suspected for the velocity field. Such a con-
vergence pattern underlines the suitability of the intermediate mesh which
provides a very good criterion level. Use of the fine mesh yields a slight im-
provement coming along with a large increase in computing effort, Table 1.
The findings are confirmed by Fig. 4 (solid symbols) where the ratio between
the resolved fluctuating and the resolved mean velocity energies are shown,
Eq. (8).

Ξ(f) =
〈
〈(f̃ − 〈f̃〉T )(f̃ − 〈f̃〉T )〉T

〈f̃〉T 〈f̃〉T

〉
. (8)

Increase of the ratio Ξ(v) denotes an increase of energy content in the
large unsteady scales which is supplemented by a decrease in the contribution
of the SGS velocity field, Fig. 3. These opposite trends of the SGS field and
the fluctuating unsteady field result in the asymptotic behavior of the velocity
predictions.

Addition to Fig. 4 of the fluctuating to mean energy ratios obtained for
the reaction rate (open triangles) and temperature (open circles) shows simi-
lar trends. For these combustion quantities, an increase of the grid resolution
increases the energy content of the fluctuating scales, the mean field levels
being unchanged (not shown). The asymptotic behavior (observed for veloc-
ity) is not clear for these reacting fields. At this stage, it is important to note
that combustion is a process which does not occur at large scales (although
it is strongly influenced by these motions). Convergence of reacting LES (if
existing) is not guarantied to happen at the same grid resolution as the one
issued by the velocity scales. That observation does not preclude the potential
existence of a grid independent turbulent reacting LES for the studied con-
figuration. It only underlines the fact that the fine mesh predictions do not
seem to reach such a state with the mesh resolution considered.

Analysis of the instantaneous fields of combustion provides first insights on
the previous results. Figure 5 shows Probability Density Functions (PDF) of
burning equivalence ratios (noted Φ). These functions are obtained by condi-
tionally classifying the equivalence ratios within the LES instantaneous snap-
shots provided that the local value of the burning rate is greater than 10%
of the mean burning rate. Three peaks occur in the PDF’s of the three sim-
ulations. The first peak corresponds to points burning near the mean cham-
ber equivalence ratio and for which the combustion chamber is designed to



326 G. Boudier et al.

(a)

(b)

(c)

Fig. 2 Transversal view of Pope’s criterion [24] in a plane going through one outlet
of the pre-vaporizer: (a) coarse, (b) intermediate and (c) fine mesh predictions
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(a)

Fig. 3 Pope’s mean volumic criterion as a function of the mean cell volume used in
LES

(a)

Fig. 4 Evolution of Ξ(f), Eq. (8), as a function of the grid resolution

operate. The second peak, Φ = 1, coincides with diffusion type combustion
while the last peak, Φ ≈ 1.7, is rich premixed flames located near the pre-
vaporizer outlets. As the mesh resolution is increased a change in local com-
bustion regime is observed. Indeed, the second peak is more pronounced as
the mesh is refined. That transition is initiated only when the velocity field
is converged (i.e. the intermediate mesh) and is in agreement with the be-
haviors noted on Fig. 4 for the combustion fields. More computing effort is
necessary at this stage to conclude on the full convergence of the LES model
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(a)

(b)

(c)

Fig. 5 Probability density function of the equivalence ratio for which the burning
rate is higher than ten percent of the mean reaction rate: (a) coarse, (b) intermediate
and (c) fine mesh

for such a complex turbulent reacting flow. These preliminary observations
also underline the necessity of highly efficient and parallel flow solvers.

5 Conclusions

Convergence of reacting LES predictions for an aeronautical gas turbine com-
bustion chamber is analysed in terms of mesh resolution. To do so three fully
unstructured meshes containing respectively 1.2, 10.6 and 43.9 million tetrahe-
dra are used to compute the fully turbulent reacting flow in an inverted-flux
chamber burning gaseous fuel. Resolution criteria obtained from the mean
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velocity and reacting fields depict different convergence states. The velocity
predictions show good quality criteria on the intermediate mesh. The fluctu-
ating to mean resolved velocity ratio and the sub-grid to total kinetic energy
ratio prove the existence of an asymptotic state where the LES velocity statis-
tics become independent of the grid resolution. In that sense, the intermediate
mesh seems satisfactory and provides a good evaluation of velocity field as pre-
dictable by the LES velocity model. The reacting fields and more specifically
combustion regimes are seen to be slightly grid dependent while maintaining
mean global combustion quantities. Even on the fine mesh, criteria do not de-
pict full convergence although the expected behavior is observed as the grid
resolution is increased. Indeed energy contained in the fluctuating resolved
field is increased as the mesh is refined. As the grid is refined, changes in the
local combustion regimes are underlined and occur only after convergence of
the velocity field. More computations are however needed to conclude on the
existence of mesh independent reacting LES results for the studied configura-
tion.
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Analysis of SGS Particle Dispersion Model in
LES of Channel Flow
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Abstract. The wall-bounded two-phase turbulent flow with the dispersed heavy
particles is modelled in the Eulerian-Lagrangian approach. The large-eddy simula-
tion (LES) method with near-wall resolution is applied to compute the dynamics
of the continuous phase (fluid). The particle tracking with account for drag and lift
is used for the dispersed phase. A stochastic model for the residual fluid velocity
along particle trajectories is used to account for the subgrid-scale (SGS) particle
dispersion. Results for the fluid and particle velocity statistics are presented. In the
case of particles undergoing deposition on the channel walls, the separation velocity
curve, resulting from several variants of modelling, is presented and discussed.

Keywords: Two-phase flow, Lagrangian-Eulerian approach, Large-eddy simula-
tion, Subgrid-scale particle dispersion, Deposition

1 Introduction

The Lagrangian-Eulerian studies of turbulent polydispersed flows have tra-
ditionally been based on RANS for fluid, cf. [8] for a review and new pro-
posals. This approach is still predominant for industrial applications because
of its computational efficiency. Some recent developments and limitations of
the statistical models are discussed in [12]. Nowadays, LES of particle-laden
flows gains in popularity, specially for cases where the large flow scales con-
trol the particle motion [1, 11]. Consequently, there is an ongoing debate as
to the importance of the residual, or subgrid-scale, flow field on the dynam-
ics of the particulate phase, both in homogeneous turbulence [14, 19] and in
wall-bounded flows [2, 4, 24]. Practical ramifications of this issue go as far as
collisional flow regime [3] or spray combustion [9]. In wall-bounded flows, the
importance of the lift force and a suitable expression for it are discussed [25].
Another problem is the interplay of modelling and numerical errors related,
e.g., to the interpolation of flow velocity at particle locations and the inte-
gration of particle equations. So, despite a number of papers on LES studies
of particle-laden flows published over the last years, e.g. [2, 24], the issue is

J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, 331
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still perceived as open and further work is warranted regarding the effect of
fluid on particle motion (such as SGS dispersion, kinetic energy, preferential
concentration, collision statistics, deposition velocity) and vice versa (effect of
the particle mass loading on the SGS stress term for the fluid phase, etc.).

In the paper, we consider the issue of particle motion one-way coupled with
the fluid flow that is determined from the LES. Fluid velocity at the particle
location is found with the local formulae: either the tri-linear interpolation
or the second-order accuracy in each coordinate direction. To account for the
subgrid-scale particle dispersion, a stochastic model of the Langevin equation
type is applied for the residual fluid velocity along particle trajectories. First,
with the elastic wall rebound condition for particles we compute their velocity
statistics. Next, with the absorbing wall boundary condition we consider the
separation of particles from the flow and compute the deposition mass flux on
the channel walls.

The main emphasis of the paper is twofold. First, we report our results
from a “regular” LES of particle-laden channel flow. A name “regular” means
that our LES (with no reconstruction of the residual velocity) corresponds
to the computational conditions of the DNS reference data for the flow case
defined by the COST Action benchmark test [6] where, in particular, only
the drag force acting on point-particles is considered. Second, regarding the
physical modelling, by performing an “enhanced” LES we analyse the impact
of the lift force term and of the reconstructed residual fluid velocity, called
a subgrid-scale particle dispersion model, on particle statistics (turbulent en-
ergy, preferential concentration patterns, deposition mass flux).

2 Governing Fluid and Particle Equations

Regarding the carrier fluid, we consider incompressible viscous flow in the
absence of gravity. It is governed by the Navier-Stokes equations that in LES
are spatially-smoothed with a filter of length scale Δ̄. For the present com-
putation, the dynamic model of Germano and Lilly (cf. [13]) is applied. As
far as the dispersed phase is concerned, we treat it as dilute with the one-way
momentum coupling (fluid to particles). We use a simplified particle equation
of motion [12] which basically is appropriate for the case of heavy particles
(ρp  ρf ), i.e. with the drag term only; in some simulations, we also account
for the lift force FL:

dxp

dt
= Up (1)

4
3
πr3

pρp
dUp

dt
= πr2

pCD
ρf

2
|U∗

f −Up|(U∗
f −Up) + FL . (2)

Above, U∗
f stands for the instantaneous fluid velocity “seen” by particles.

In the context of LES, the simplest choice (“regular” LES) is to neglect the
impact of the residual scales, U∗

f = Ū∗
f = Ūf (xp, t). In an “enhanced” LES
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formulation, the SGS fluid motions are accounted for through a model (for
the residual velocity “seen”, u∗

f ), and the fluid velocity “seen” by the parti-
cles is taken as Ū∗

f + u∗
f . Both treatments (regular LES as well as LES with

SGS particle dispersion) have been used in particle tracking reported in the
paper. In both cases Ū∗

f has been interpolated to particle locations from the
large-eddy fluid velocity known at mesh points. In Eq. (2), the drag coeffi-
cient CD = CD(ReU ) is analytically computed as 24/ReU in the limit of the
Stokes (creeping) flow and extended to the general case with a well-established
correlation (cf. [21]):

CD = (24/ReU )(1 + 0.15Re0.687
U ), (3)

where ReU = 2rp|Ur|/νf is the particle Reynolds number based on the particle
diameter 2rp, the relative particle velocity, Ur = Up−U∗

f , and the kinematic
viscosity of the carrier fluid, νf . In the limit of small inertia particles, the
particle acceleration due to the drag term in Eq. (2) becomes −Ur/τp where
τp = (2ρp/9ρf )r2

p/νf is the particle relaxation time.
In the near-wall region where the fluid velocity gradients are high, and in

particular the component G = ∂Ūx/∂y (x and y being the streamwise and
wall-normal directions, respectively), the lift force may have an impact on par-
ticle motion. An analytical expression for the lift force has been derived by
Saffman [18] in the limit of the Stokes flow and with the additional assump-
tions on the particle Reynolds number (slip-based) ReU � 1, the particle
Reynolds number (shear-based) ReG = (2rp)2|G|/νf � 1, and the relative
shear-to-slip parameter ε = Re1/2

G /ReU → ∞. The Saffman formula has fur-
ther been extended by McLaughlin [7] for the general case of finite ε. Then,
the generalized formula for lift force acting in the wall-normal direction with
a unit vector y0 takes the form

FL = − 9
π
μfr

2
pUr

√
|G|/νf sgn(G)J(ε)y0, (4)

where J = J(ε) is a (nearly) monotonically increasing function from J = 0
(at ε = 0) to J = 2.255 being the asymptotic (Saffman) limit (at ε =∞).

For the wall-bounded flow considered, we introduce the Stokes number as
the particle relaxation time normalised in wall-scaling, St = τ+

p = τpu
2
τ/νf .

3 LES Results for Fluid

We computed a fully-developed turbulent channel flow for Reτ = 150 which
corresponds to a benchmark test case of the COST Action LES-AID. The size
of the flow domain in the streamwise (x), wall-normal (y) and spanwise (z)
directions was 4πh×2h×2πh. The 64×84×64 grid was used and the mesh size
(in wall units) was Δx+ = 29.4 and Δz+ = 14.7. In the wall-normal direction,
Δy+ varied from 0.7 at the wall up to 6.9 at the centerline. For the reasons
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explained below, we have also computed the flow case for the smaller domain
size in the spanwise direction, namely (4/3)πh, keeping the same number of
nodes; consequently, for this case Δz+ = 9.8. The flow was assumed periodic
in the streamwise and spanwise directions. As the flow solver, we used a finite
volume, second-order accuracy, open-source code FASTEST3D (the group of Prof.
M. Schäfer, TU Darmstadt, Germany).

The results for the mean fluid velocity are illustrated in Fig. 1. Two LES
runs are shown there; they differ only by the computational domain size in the
spanwise direction: 2πh vs. (4/3)πh. As readily seen, both the mean velocity
and the r.m.s. fluctuating velocity are considerably closer to the reference
DNS data [6] when the computation is performed with a smaller mesh size, i.e.
Δz+ = 9.8. Therefore, this domain size has been kept for further simulations
of particle-laden flow presented in the paper.
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Fig. 1 LES of particle-laden channel flow at Reτ = 150: (a) the resolved mean fluid
velocity; (b) the turbulent kinetic energy; (c) the turbulent shear stress. LES with
larger Δz+: dashed lines, LES with smaller Δz+: solid lines, DNS [6]: (•)
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4 Results of Regular LES for Particle-Laden Channel

In this section, we report results for particle tracking in the fluid velocity
“seen” computed as the large-eddy velocity interpolated to the particle lo-
cations. First, we have taken only the drag term in the particle equation of
motion. Particles of various inertia, ranging from St = 1 up to St = 250, have
been tracked with the perfect (elastic) rebound wall boundary condition. It
has been checked that the simulation time t+ ≈ 5000 was generally sufficient
to result in a (nearly) equilibrium distribution of particles across the channel.
The resulting concentration profiles are considerably non-uniform, due to the
turbophoresis, with concentration peaks close to the channel walls.

First, we have assessed the impact of the fluid velocity interpolation
scheme, cf. [21]. Results of the tri-linear interpolation scheme have been com-
pared to those obtained with local second-order polynomials in each direction
(also known as the sixth-order formula). For the mean particle velocity, how-
ever, no differences between the two interpolation schemes have been noticed.
The comparison of the mean velocity of particles of St = 1 and St = 125 with
the DNS reference data is shown in Fig. 2. The effect of the interpolation
scheme becomes noticeable for the second-order particle velocity statistics.
As an example, the turbulent energy is shown in Fig. 3. The general trend
shows that tri-linear interpolation slightly underestimates the level of particle
turbulent energy. We have checked that the results for all three fluctuating
particle velocity components exhibit the same trend. Regarding now the com-
parison of our LES with the available DNS data for particles (taken from the
site cfd.cineca.it/cfd/repository, cf. [6]), the mean particle velocities are
consistently overpredicted in our LES (cf. Fig. 2). This is most probably due
to the overprediction of the mean fluid velocity itself by the LES, as shown in
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Fig. 2 LES computation of the mean particle velocity in channel flow at Reτ = 150.
St = 1: LES (solid line) and DNS (•); St = 125: LES (dashed line) and DNS (◦)
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Fig. 3 Effect of the interpolation scheme for the fluid “seen” on particle turbulent
energy: (a) St = 1; (b) St = 25. Tri-linear scheme: dashed line; tri-parabolic scheme:
solid line; DNS (•)

Fig. 1. However, the decrease of the particle mean velocity in the core region
of the channel with increasing St is correctly predicted, as demonstrated by
the DNS points. As far as the turbulent particle energy is concerned, the LES
tends to slightly overpredict this statistic, specially in the buffer region.

We have also assessed the effect of the lift force in the particle equation of
motion. No influence is seen on the level of the mean particle velocity profiles,
and there is no clear-cut dependency on St as far as the particle turbulent
energy is concerned (not shown), although some differences are observed close
to the maxima in the buffer layer.

5 Results of LES with SGS Particle Dispersion

The impact of a SGS dispersion is obviously related to the residual turbulent
energy content, ksg. Here, we estimate this quantity as [10, 19] ksg = CIΔ̄

2|S̄|2
where |S̄| = (2S̄ijS̄ij)1/2 is the scale of the resolved strain rate. The propor-
tionality parameter CI is not really a constant but varies in space and time like
the Germano coefficient in the dynamic model for SGS stresses. Analogously
to the estimation of the Germano coefficient, cf. [13], the dynamic procedure
with double filtering is applied to solve for CI [10, 15, 17]. As compared with
an a priori LES study, the resulting profile of the residual turbulent energy
ksg is qualitatively correct, yet it is consistently overpredicted over the chan-
nel (roughly, by a factor of 3 [17]). Therefore, the present estimation of ksg

and its further use in the SGS particle dispersion model (below) should be
treated as provisory.

A stochastic model for the SGS particle dispersion recently proposed by
the authors builds on [14]. Its crucial ingredients are the subgrid scales of the
fluid “seen”: velocity σ∗

sg and time τ∗L. We assume that σ∗
sg = σsg =

√
(2/3)ksg.
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Fig. 4 Effect of the SGS particle dispersion model for the fluid “seen” on the
r.m.s. fluctuating particle velocity, wall-normal component, for: (a) St = 1, (b)
St = 5. Regular LES: solid lines; LES with the SGS particle dispersion model (with
Csg = 0.01): dot-dashed lines; DNS (•)

By analogy to modeling turbulent diffusion of fluid elements in the context
of statistical (RANS) description [16], we assume that u∗ is governed by the
Langevin equation

du∗
i = −u∗

i

τ∗L
dt +

√
2σ2

sg

τ∗L
dWi, (5)

where dWi is an increment of the Wiener process. The time scales of residual
fluid motions “seen” by the particle are taken as τ∗L = CsgΔ̄/σsg. The model
constant Csg = O(1) accounts for the uncertainty concerning the time scale
of the residual velocity autocorrelation.

By integrating Eqs. (1), (2) and (5) in time, the particle trajectories in
the flow are determined together with some statistics of their motion. For the
smallest particles considered (of St = 1) there is a noticeable effect of the SGS
particle dispersion model on the intensity of particle velocity fluctuations, as
illustrated in Fig. 4(a). Of special importance is the wall-normal component,
since its level is directly connected with the separation efficiency. The impact
of the SGS particle dispersion model on the r.m.s. particle fluctuating velocity
components is still noticed for St = 5, as shown in Fig. 4(b). However, for
larger inertia particles, no discernible differences are seen for these statistics.

As known from comprehensive DNS studies (cf. [20]), particles of certain
inertia preferentially concentrate in near-wall streaks. We have checked the
impact of filtering on the instantaneous particle structures, and a subsequent
effect of applying the SGS dispersion model. The results (most pronounced
for St = 25) are shown in Fig. 5. It is readily noticed that the preferential
concentration patterns are altered in LES: they are less visible, yet the length
of spatial correlation is larger in the streamwise direction. In the LES with
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Fig. 5 Particle instantaneous locations in turbulent channel flow; a layer parallel
to the wall (0 < y+ < 5), particles of St = 25: (a) DNS [6], (b) regular LES, (c)
LES with the SGS particle dispersion model

SGS dispersion model, the preferential concentration decreases further. This
may be expected since the Langevin stochastic model is diffusive by nature.
The observed trends in near-wall preferential concentration are consistent with
those we observed in isotropic turbulence [14].

6 Particle Separation

The mass flux of particles separating on the channel walls is quantified as
the particle deposition velocity (cf. [22, 23]). We have computed the non-
dimensional deposition velocity V +

dep in several variants of our LES and plot-
ted it vs. the particle Stokes number, i.e. the momentum relaxation time τp

made non-dimensional with wall units. As already discussed [15], the depo-
sition mass flux is heavily under-estimated for middle-inertia particles (for
O(1) ≤ τ+

p ≤ O(10), say), possibly due to the neglect of SGS particle disper-
sion and/or the lift force effects. In the computations reported here, we have
thoroughly checked this hypothesis.

First, in the “regular” LES runs, we have obtained the deposition curve
with the drag force only. Subsequently, we have added the lift force term,
alternatively in the asymptotic Saffman form or in the generalized McLaughlin
setting, cf. Eq. (4). Results are shown in Fig. 6. As it transpires from the
drag-only results (�), there is virtually no particle deposition below St = 5,
contrary to the experimental evidence of Liu & Agarwal [5]. It has to be
noted that the Brownian separation regime extends only below St = 0.5, say.
Moreover, in the presence of lift force there is no separation beyond St = 5
neither. (Figure 6 is slightly misleading in this respect since results for V +

dep

at smaller St are not plottable in the logarithmic scale.)
For the LES simulations with the SGS particle dispersion model, the de-

position velocity can be considerably improved, depending on the model con-
stant. Several runs with varying values of Csg are illustrated in Fig. 7 (drag
force only). As expected, the impact of the SGS dispersion model is largest
for small-inertia particles (here, St = 2) and vanishes for large ones (here,
St = 250).
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Fig. 6 Particle deposition velocity in channel flow at Reτ = 150: lift force effect.
Drag only (squares), Saffman lift (◦), McLaughlin lift (triangles). Experimental data
[5] at Re = 104 (•), at Re = 5 · 104 (�)
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Fig. 7 LES of particle-laden channel flow at Reτ = 150. Particle separation velocity:
LES with no SGS particle dispersion (�), LES with SGS dispersion model for Csg =
0.1 (), Csg = 0.01 (×), and Csg = 0.002 (◦); experiment (Liu & Agarwal 1974) at
Re = 104 (•), Re = 5 · 104 (�)

Although the stochastic SGS dispersion model has got a considerable im-
pact on particle deposition velocity, the current results are still not completely
satisfactory. As noticed in Fig. 7, the quantitative agreement with the exper-
imental value of the deposition velocity can be reached for a particular choice
of the model constant (Csg = 0.002), yet the qualitative agreement of the re-
sults remains fairly poor, since the scaling V +

dep ∼ (τ+
p )2 is not retrieved in the

“diffusion-impaction” regime. However, as it transpires from Fig. 8, our de-
position results with the McLaughlin lift force and the SGS dispersion model
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Fig. 8 Particle deposition velocity in channel flow at Reτ = 150: impact of the
SGS particle dispersion model. Model constant: Csg = 0.1 (), Csg = 0.01 (×), and
Csg = 0.002 (◦); experimental data [5] at Re = 104 (•), at Re = 5 · 104 (�)

are quite acceptable, and arguably not worse than those obtained earlier by
Wang et al. [25] with a more sophisticated lift force expression, taking into
account the wall proximity.

7 Conclusion and Perspectives

In the paper, we studied LES of wall-bounded, particle-laden flow, with ac-
count on drag and lift terms in the particle equation of motion. Both the stan-
dard analytical formula of Saffman and its extension proposed by McLaughlin
were implemented. Then, we analysed the effect of a stochastic model for resid-
ual (SGS) particle motion, based on the Langevin equation for the residual
velocity of the fluid along particle trajectories. The statistics of the dispersed
phase have been computed for the elastic rebound boundary condition. Next,
for the absorbing boundary condition we computed the mass flux of particles
undergoing separation on channel walls. The sources of discrepancies with
respect to the available experimental and fully-resolved computation (DNS)
reference data were indicated. With the account of the stochastic Langevin
model for the SGS particle dispersion, a reasonable agreement of the particle
deposition velocity with the experimental data has been reached. Although the
SGS dispersion model has a rather small impact on the second-order velocity
statistics, it considerably affects the wall deposition for smaller particles. The
model, being diffusive by nature, is not able to retrieve particle concentration
patterns (streaks) in the near-wall region. Therefore, further work on this and
other SGS dispersion models is warranted, also for free shear flows, such as
particle-laden jets.
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Abstract. Turbulent non-isothermal fully-developed channel flow laden with small
particles is investigated through numerical simulation combined with the tracking
of the individual particles using DNS and LES. The simulations are performed at
Reτ=180 and 395, with Pr=1.0, using the point-particle approach and neglecting
the influence of the particles on the fluid and inter-particle interactions. The focus is
on the interactions between particles and turbulence and their effect on the particles
using DNS and LES. Presented data obtained through direct numerical simulation
show new effects related to clustering and heat exchange for particles. The LES
results shows that particles behaviour is very complex and to have proper results
additional subgrid modelling for dispersed phase is required.

Keywords: Particle laden flow, Multiphase flow, LES/DNS

1 Introduction

One of the interesting problems in two-phase turbulent flow is prediction of
transport of mass and thermal energy by small solid particles or droplets in
non-isothermal turbulent flow. This type of flow occurs in large number of
environmental and industrial processes e.g., clouds formation, coal combus-
tion, catalytic cracking, filters, chemical reactors, etc. Very accurate prediction
of particles behavior is important to design industrial devices or understand
physics. Experiments and numerical computations demonstrate that shear
flow has complex effect on the particle fluctuations. Due to the interactions
between particles and turbulence, the distribution of the particles and their
properties can be highly influenced. Small heavy particles immersed in a tur-
bulent flow tend to accumulate, creating strong inhomogeneities in concentra-
tion and form cluster structures in the low-speed streaks [1]. But also due to
momentum and heat exchange particles-turbulence interaction gets even more

J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, 343
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complex and can influence thermal properties of particles. This can have im-
portant consequences on the efficiency and direction of many chemical and
industrial processes.

Complexity of turbulent transfer phenomena which covers a wide range of
flow scales from very small to large one introduce different mechanisms play-
ing important role in the interaction between particles and turbulent struc-
tures. In the past a lots of work has been done for understanding influence
of particle inertia on dispersed phase structure and on fluid structure using
simple models [2, 3, 4]. The simulations using simple models do not promise to
have high reliability and applicability and fail in more accurately analysis of
the flow. On the way of understanding particle-turbulence interactions Direct
Numerical Simulation plays an important role. For flows laden with a large
number of small particles, Eulerian-Lagrangian point-particle DNS has been
quite successfully in studies of the particle-turbulence dynamics in isother-
mal flows. Several important aspects of particle-turbulence interactions have
been found by Maxey & Riley [5], Kulick [6], Fessler & Eaton [7], Chung [8].
Application of DNS to the study particle deposition in boundary layers by
Wang and Squires [9] has clearly show accumulation of heavy particles in the
low velocity streaks. Most of recent works focus on isothermal flow and very
few studies deal with non-isothermal particle-laden flow. Hetsroni & Rosen-
blit [10] and Hetsroni [11] used infrared thermography to study the thermal
interaction between the particle-laden turbulent flow and a heated plate. As
a results of this experiment they reported enhancement of heat transfer, due
to addition of particles. This effect can increase heat transfer of factor about
35% depending on particle size, loading and flow conditions. In recent compu-
tations Hetsroni [11] shows that the particles cause an increase in wall-normal
turbulent flux. This effect probably can be directly caused by “film scraping”
on “particle convection” assumed by Subramanian [12] or indirectly caused
by turbulence modifications (mainly change of a level of wall-normal fluctu-
ations) Rashidi [13] and Kaftori [14]. Oesterle [15] perform numerical studies
focusing on particle collisions in heated pipe flow. He reported that flow dy-
namic alternation induced by particle-wall and inter-particle collisions results
in significant modulation of the heat exchange rate, but direct heat exchange
during inter-particle collisions (solid–solid) and for particle-wall collisions is
negligible.

A number of papers on Large Eddy Simulation of particle-laden flows have
been published over the last years [16, 17]. But the issue is still perceived as
open and further work is warranted on the effect of subgrid-scale fluid flow on
particle motion and vice versa.

In the present paper we will focus on particle-turbulence interaction in
wall heated fully-developed turbulent vertical channel. We have chosen wide
range of particle time scales starting from τ+

v =2 up to τ+
v =29 and for τ+

θ =0.3
up to τ+

θ =105. The choice allows us to discriminate at different mechanisms
of particle interactions and covers the range of particle most responsive to
the flow structures in boundary layer. For this purpose we extend the point-
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particle approach in order to deal also with heat transfer. The temperature
is considered as a passive scalar. We consider only one-way coupling, from
both the hydrodynamic and thermal perspectives, i.e., the influence of the
particles on the turbulence and particle collisions are not taken into account.
We focus on how the particle-turbulence interaction affects the temperature
of the particles, on the exchange heat rate and on the correlation between the
properties of the particles and of the surrounding fluid. In last section LES
approach have been used in comparison with DNS results. Due to complexity
of particles behaviour only some of quantities (for dispersed phase) shows
good agreement. Phenomena like clustering and concentration is very difficult
to reproduce properly with LES and additional subgrid scale modelling for
dispersed phase seems to be required.

2 Mathematical Model

For current studies of wall-bounded turbulent particle-laden flow the Eulerian-
Lagrangian point-particle approach [18] has been used. Particles are dispersed
in a pressure-driven heated flow of gas, assumed to be incompressible and
Newtonian. Periodic boundary conditions are imposed on the fluid velocity
and temperature field in streamwise and spanwise directions, no slip boundary
conditions are enforced to the wall. We assume very small values of volume
fraction of particles and small size of particles, so the particles have negligible
effect on turbulence and the interactions between the particles and turbulence
is one-way coupling. We assume also that for very small particle number
density, with small particle size, heat exchange between the particles and
the turbulence has an insignificant effect on the temperature of the flow.

The continuous-phase is solved using standard direct numerical simula-
tions or large eddy simulations techniques for incompressible flow together
with the tracking of the individual particles. The transfer of momentum be-
tween the particle and the fluid is considered through a force located at the
particle center, which is determined from the velocities of the particle and of
the surrounding fluid. The heat transfer is determined base on velocities of
the particle and fluid and the temperatures of the particle and the surround-
ing fluid. Those approaches are valid if the particles are significantly smaller
than the smallest flow scales and the Biot number is less than 0.1. Since we
want to consider only the particle-turbulence interactions, the simulations are
performed in a channel without gravity. The geometry of the problem under
consideration is sketched in Fig. 1.

For the continuous-phase, the equations to be solved are mass, momentum
and energy. For small heavy particles the only significant force is the drag force
[19] and the equation of motion for a particle can be written as:

dv
dt

= Cd
Rep

24
1
τv

(u− v) (1)
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Fig. 1 Particle-laden channel flow

where u is the velocity of the fluid interpolated at the center of the particle.
The particle Reynolds number Rep, and the hydrodynamic particle-re-

laxation time τv, are defined as:

Rep =
| (u− v) | Dp

ν
, τv =

ρp

ρ

D2
p

18ν
Cd =

24
Rep

(2)

where ρp and ρ are the particle and fluid densities, Dp is the diameter of the
particles and Cd is the drag coefficient for Stokes flow (valid for small Rep).
The equation for the particle temperature, assuming a Biot number less than
0.1 (uniform particle temperature) can be written as:

dTp

dt
=

Nu

2
1
τθ

(T − Tp) τθ =
ρpcpD

2
p

12k
(3)

T is the temperature of the fluid interpolated at the center of the parti-
cle, and τθ is the thermal particle-relaxation-time. The Nusselt number was
calculated from the Ranz-Marshall correlation.

The position, flow, and particle quantities are normalized by the chan-
nel half-width, δ, the friction velocity, uτ , and the friction temperature, Tτ .
The convective and diffusive terms in all the equations are discretized using
a second-order central scheme. For time-advancement a second-order Adams-
Bashforth scheme is used. The particle motion and particle temperature al-
gorithms are obtained with using a second-order Adams-Bashforth scheme
for the time-advancement, and a tri-linear interpolation for the velocity and
temperature. Even though some times high order algorithm are used to inter-
polate the fluid velocity at the particle position, there is no clear agreement
on the literature that this procedure has a large influence on the statistics.
The flow is heated from walls with a uniform heat-flux. Periodic boundary
conditions are imposed in streamwise and spanwise directions.

In the case of Large Eddy Simulations, the filtered continuity and Navier–
Stokes equations, that are solved for the gas-phase are,

∇ · u = 0 (4)
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Du
Dt

= −∇P
ρf

+ ν∇2u +∇ ·T (5)

where ρf and ν are the density and the kinematic viscosity of the fluid. The
influence of the subgrid motion on the resolved gas-velocity is represented
by the extra stress-tensor, T. The code used to solve equations 4 and 5 is
the same as in the DNS case. The stress-tensor, T, is computed using the
standard Smagorinski model, with the Smagorinski constant Cs = 0.1. Van
Driest wall-damping is also included in the calculations [20]. More details
about the single-phase solver can be found in [21].

The conditions for the dispersed phase were the same as for the DNS case.
This means, no model was used to mimic the unresolved flow scales. Moreover,
for simplicity, the Large Eddy Simulations where performed under isothermal
conditions.

3 Results

Calculations are performed on a computational domain of 6.4x3.2x2.0 δ in
x,y and z discretized with 128x128x66 (for Reτ=180) and 256x256x128 (for
Reτ=395) on DNS and 64x64x48 on LES control volumes. For the streamwise
and spanwise directions uniform grid spacing has been used. For wall normal
non-uniform grid spacing with an hyperbolic-tangent stretching. The shear
Reynolds number of the flow was Reτ=180 and 395 based on the shear velocity
and half channel height. In order to obtain good statistics for particle for the
simulations presented here 1.5x106 particles were considered.

The simulations started from arbitrary conditions (random flow and tem-
perature field) and flow field has been time advanced to get a statistically-
steady state for velocity and temperature. When a statistically steady state
is reached particles are distributed uniformly over the computational domain.
Their initial velocity assumed to be the same as the fluid in the center of parti-
cles location. The particles need to adapt to the new velocity and temperature
which usually takes few particle response times. But upon that much longer
time is required to get statistically-steady state for particles conditions nec-
essary for reliable statistics (to obtain statistically steady state for particles
takes respectively much longer time than for flow field; also, it takes longer
for particles with larger response time). After initial big change in particle
concentration profile, particles continue very slow process of accumulations
near walls. As shown by Portela [19] this process can take enormous amount
of time. In present computations time before particles start to be averaged
takes at least t∗ = 200. The statistics for the fluid and particles were averaged
for 100δ/uτ at Reτ=180 and for 40δ/uτ at Reτ=395. The particle proper-
ties were obtained by averaging over a rectangular slices using simple linear
model base on center of particle locations and distance from reference points
and reference point corresponds to flow computational grid points. The mean
streamwise velocity and mean temperature profile and other mean turbulence
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Fig. 2 Computed flow quantities for Reτ = 180 in comparison with other DNS
computations [22, 23, 24]

quantities for fluid phase are compared with DNS data provided by other re-
searchers [22, 23, 24] and shown in Fig. 2. We can notice a good agreement
with the work from other authors unless some small differences can be found
between data from databases mainly cause by different way of solution and
differences in grids.

It is well-known that in wall-bounded shear flow particles concentrate near
the wall. And particle concentration is non-uniform gives highest concentra-
tion in low-speed streaks due to particle interactions with the local turbulent
flow structure. But it is also important to know how this non-uniformity in-
fluence on the temperature or heat fluxes. The particle concentration profiles
are shown in Fig. 3. For all cases very high particle concentrations near the
wall can be observed. Particle concentration is two orders of magnitude higher
than in core flow and remain uniform only for small area close to channel cen-
ter line. Even for relatively light particle with τv = 2 concentration is one
order of magnitude higher than the value in center of the channel. The small
concentration of particles in core region of channel shows that in order to get
accurate good statistical number of particles must be large.

The mean streamwise-velocity profiles and mean temperature for particle
and fluid are also shown in Fig. 3. For Reτ = 180 and up to z = 0.5δ particle
velocity is slightly smaller then the fluid velocity (except very close to the
wall) and this difference increases with increasing τv with maximum difference
around z = 30 in wall units. For higher z velocity of particle can be slightly
larger than fluid velocity and maximum deviation was seen for particle with



Numerical Data for Reliability of LES 349

Fig. 3 Particle concentration (top), velocity (middle) and temperature (bottom) for
particle relaxation time τv = 2, τv = 7 and τv = 29

τv = 7. Similar effect can be seen for Reτ = 395. For most of the cases
temperature of particle is smaller then temperature of the fluid for all distance
z. Which is different from profile of streamwise velocity where in the core
of channel velocity of the particle overlap velocity of the fluid. But main
difference can be seen close to the wall where temperature of the particle
even very close to the wall is much smaller than temperature of the fluid.
This effect occurs also for relatively light particles and is more pronounces for
high Reynolds number. From this point can be seen that uniform mixing of
particles in turbulent flow is non-trivial task.

On Fig. 4 thermal quantities for fluid and particles are presented. Velocity-
temperature correlations are presented for the fluid and for the particles.
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Fig. 4 Temperature and velocity-temperature correlation for particle relaxation
time τv = 2, 7, 29, and τ+

θ = 3, 10.5, 43.5, for Reτ = 180 (left) and Reτ = 180 (right)

For fluid with Prandtl number Pr=1 and for three types of particles with
τ+
v = 2, 7, 29 and τ+

θ = 3, 10.5, 43.5 respectively and for Reτ = 180, 395.
Correlations of streamwise velocity fluctuations and temperature for particle
are much larger than for the fluid and the difference is increasing when particle
response time increases. Correlation < wθ > for light and heavy particle is
smaller than for the fluid but for particle with response time τ+

v = 7 for most
of z is equal the value for the fluid or slightly exceed those value. Comparison
of this component with < uw > component shows that also for < uw >
maximum value is for middle response particle than for light and heavy which
are most close to the fluid correlation [18]. This means that in this effect
hydrodynamic behavior of streamwise velocity plays primary role.

To explore that effect we have drawn on Fig. 5 average distributions of the
temperature in the plane x-y for z+ = 3.6. For the fluid in this region mean
temperature is around θ = 3.6 but for the particle it depend of the momen-
tum and thermal response time. For most light particle mean temperature is
around θ = 2.0 and is not decreasing if the thermal response time is 10 times
faster. For heavy particle mean particle temperature is around θ = 0.8 and is
sligthly decreasing with decreasing τ+

θ . This shows that particle response time
is fast enough to converge particles thermally but not hydrodynamicaly. Also
because of preferential concentration particle are not randomly distributed
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Fig. 5 Particle pdf for particle relaxation time τv = 2 (left) and τv = 7 (right) for
Reτ = 180, and τθ from 0.3 up to 105

in the fluid but located in streaks more often than in other positions. This
influence statistics for thermal components

3.1 Large Eddy Simulations

Large Eddy Simulations where performed for Reτ = 180, on a computational
domain of size 10x4x2 measured on channel half-height. The grid had a resolu-
tion of 64x64x48, with uniform grid spacing in the stream and spanwise direc-
tions, and an hyperbolic-tangent stretching in the normalwise direction, with
a high number of grid points in the near-wall region. The simulations started
from an interpolated profile of a fully developed DNS velocity field. Once an
statisticaly steady state flow field was obtained, particles with τ+

v = 2 where
introduced uniformely distributed in the domain. Particles where tracked for
t∗ = 100, and both fluid and particles properties where averaged from t∗ = 50
till t∗ = 100.

On Fig. 6 are presented the mean streamwise velocity profiles for LES
and DNS, at Reτ = 180. On the left hand side are the profiles for fluid only,
while on the right hand side are also included the mean velocity profiles for
the particles. Both plots show a very good agreement between the DNS and

Fig. 6 Velocity profiles for LES and DNS for Reτ = 180
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Fig. 7 Velocity fluctuation profiles for LES and DNS for Reτ = 180

LES profiles. In contrast to mean velocity field where the mean velocity for
continuous and for dispersed part computed with DNS and LES shows good
agreement stresses differs quite a lot. On Fig. 7 we can see that value obtained
by LES are lower then for DNS for < uu >, < vv > and < ww > components
for the fluid and for the particles. Level of fluctuations play key role in particle
distributions and, as can be seen from Fig. 8, large eddy simulation results
give much higher concentration level of particles close to the wall. Also, as can
be seen on Fig. 8, the predicted slip velocity with LES is much higher than
for DNS. This can be also cause by much smaller particle fluctuation.

Fig. 8 Concentration profiles and slip velocity for Reτ = 180
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4 Conclusion

We extended the Eulerian-Lagrangian point-particle LES/DNS approach in
order to to study particle transport and heat transport in wall-bounded turbu-
lent flow and to verify possibility of using LES in particle laden flow. Several
statistical quantities for particle velocity, temperature and concentrations and
flow-particle correlations for the correlations between continuous-phase and
dispersed phase were obtained from the calculations. All results for the fluid
phase (mean fluid velocity, mean temperature and correlations) show a good
agreement with results obtained by other researchers using DNS/LES. The
qualitative analysis of the turbulence and particle structures shows streaky
patterns for the hydrodynamics and indicates how these patterns are associ-
ated with the patterns for the temperature of the particles. Particles tends
to be highly concentrated in the region close to the wall but with increasing
Reynolds number concentrations of particles in the region close to the wall
does not increase. Particles agglomerate in form of long strikes. This behaviour
knows as preferential concentration is very strong close to the wall but it can
be also observed in whole domain. It has been shown that mean temperature
of the particle is much smaller than temperature of the fluid. This occurs for
all particles and also very near the wall and even on the wall. Mean stream-
wise velocity fluctuation in the boundary layer is different for the fluid and for
the particle, and decorrelates with increasing time response opposite effect has
been seen for mean wall-normal component which value for particles is smaller
then for the fluid and its value for particles decrease with increasing response
time. This affects the velocity-temperature correlations which are proportional
to the turbulent heat fluxes. The heat flux transported by the particles in the
streamwise direction can be 50% larger (most heavy particles) compared to
the fluid. It has been found same similarity between streamwise velocity fluc-
tuation and temperature fluctuations. Distributions of the temperature close
to the wall shows that temperature of particle and the temperature of the fluid
can be shifted quite a lot. This difference can strongly affect many industrial
and chemical processes.

Calculations with LES for particle laden flow is still perceived as open and
further work is warranted on the effect of subgrid-scale fluid flow on particle
motion. Particle motion similar to continuous phase for proper evaluation of
key properties e.g. kinetic energy, preferential concentration, collision statis-
tics, deposition velocity etc. required additional models which will take into
account not only local but also global structure of particles. Regarding the
treatment of the dispersed phase, model for the residual fluid velocity along
particle trajectories can be one of solution.
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Abstract. The problem of assessing accurate Eulerian-Lagrangian modeling of
heavy particle dispersion in Large Eddy Simulation (LES) is addressed. This issue is
investigated in a systematic way by performing a priori and a posteriori LES coupled
with Lagrangian particle tracking of fully developed channel flow, in which different
grid resolutions and different values of the particle response time are considered.
The accuracy in the prediction of the particle velocity statistics, near wall accumu-
lation (turbophoresis) and preferential concentration is assessed trough comparison
against DNS data. Both a priori and a posteriori tests indicate that turbophore-
sis and particle segregation can not be accurately predicted without introducing a
model in the particle motion equations, also for particles having a response time
much larger than the scales non resolved in LES. Furthermore, the present results
indicate that the reintroduction of the correct level of fluid and particle velocity
fluctuations is not the only issue for a closure model for particle equations.

Keywords: Large-eddy simulation, Heavy particle dispersion, Turbulent channel
flow

1 Introduction

The dispersion of particles with finite inertia in wall-bounded turbulent flows
is characterized by phenomena such as non-homogeneous distribution, large-
scale clustering and preferential concentration in the near-wall region due to
the inertial bias between the denser particles and the lighter surrounding fluid.

Direct Numerical Simulation (DNS) together with Lagrangian particle
tracking has been largely used to investigate and quantify these macroscopic
phenomena, for instance in vertical turbulent pipe and channel flows. Clearly,
DNS is limited to low Reynolds numbers, while the simulation of turbulent
flows at higher Reynolds numbers can be tackled using Large-Eddy Simula-
tion (LES). However, only the filtered fluid velocity is available from LES,
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while the particle motion depends on the actual fluid velocity and, thus, a
closure model for the particle motion equations should in principle be needed.
Nonetheless, this point has received only little attention, especially if com-
pared to the huge amount of work devoted to the closure problem in LES for
the fluid dynamic part. In several previous LES of particle laden turbulent
flows (see, e.g., [1, 2]) no SGS model was introduced in the particle motion
equations, based on the assumption that the particle response time was large
compared to the smallest timescale resolved in LES [2]. It was later shown
that this assumption may lead to a certain degree of inaccuracy on the predic-
tion of particle velocity statistics and concentration. In particular, the results
obtained by Kuerten and Vreman [3] and by Kuerten [4] for turbulent disper-
sion of heavy particles in channel flow have shown that LES underestimates
the tendency of particles to move towards the wall by the effect of turbulence
(turbophoresis). To overcome this problem, a closure model for the particle
equation of motion based on filter inversion or approximate deconvolution was
used in turbulent channel flow [4] and in homogeneous turbulent shear flow.
[5] An effort was also provided to establish criteria according to which the
SGS modeling for particles could be judged necessary or not. In particular,
Février et al. [6] have shown that LES filtering has an effect on particle motion
which depends on the ratio of the particle size to the filtered spatial scales.
For single particle statistics such as turbulent dispersion, Fede and Simonin
[7] confirm that an explicit accounting of sub-grid fluid turbulence on particle
transport is not required when the particle response time is much larger than
the cut-off timescale of the sub-grid velocities. However, they show also that
accumulation and collision phenomena are strongly influenced by sub-grid
fluid turbulence even when the particle response time is up to O(10) times
the Kolmogorov time scale.

Aim of the present study is to build on the work of Kuerten and Vreman
[3] extending the analysis of Fede and Simonin [7] on the sub-grid turbulence
effects on particle accumulation to turbulent channel flow, which presents the
additional complexity of a solid wall and of turbulence strong anisotropy and
non-homogeneity. The analysis is based on a systematic investigation on the
importance of SGS effects on particle motion through a priori and a posteriori
LES carried out for different particle inertia and different LES resolutions.

2 Physical Problem and Numerical Methodology

The flow into which particles are introduced is a turbulent channel flow of air
(assumed to be incompressible and Newtonian) with density ρ = 1.3 kg m−3

and kinematic viscosity ν = 15.7×10−6 m2 s−1. The reference geometry con-
sists of two infinite flat parallel walls: the origin of the coordinate system is lo-
cated at the center of the channel and x, y and z denote the streamwise, span-
wise and wall-normal directions respectively. Periodic boundary conditions are
imposed on the fluid velocity field in x and y, and no-slip boundary conditions
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are imposed at the walls. The shear Reynolds number Reτ = uτh/ν, based
on the shear (or friction) velocity, uτ , and on the half channel height, h, is
equal to 150. The shear velocity is defined as uτ = (τw/ρ)1/2, where τw is
the mean shear stress at the wall. The corresponding bulk Reynolds number
is Reb = ubh/ν = 2100 based on the bulk velocity ub = 1.65 m s−1. All
variables considered in this study are reported in dimensionless form in wall
units. Wall units are obtained combining uτ , ν and ρ. The dimensions of the
computational domain are 4πh×2h×2πh, corresponding to 1885×942×300
wall units in x, y and z respectively.

Particles with density ρp = 1000 kg m−3 are injected into the flow at con-
centration low enough to consider dilute system conditions (particle-particle
interactions are neglected). The effect of particles, which are assumed point-
wise, rigid and spherical, onto the turbulent field is also neglected (one-way
coupling assumption). The motion of particles is described by a set of ordinary
differential equations for particle velocity and position at each time step. For
particles much heavier than the fluid (ρp/ρ  1) it has been shown [8] that
the only significant forces are Stokes drag and buoyancy and that Basset force
can be neglected being an order of magnitude smaller. To the aim of mini-
mizing the number of degrees of freedom by keeping the simulation setting as
simplified as possible, the effect of gravity has also been neglected here. Thus,
the following equations are obtained, in which only inertia is considered:

dx
dt

= v ,
dv
dt

= −3
4
CD

dp

(
ρ

ρp

)
|v − u|(v − u) , (1)

where x is the particle position, v the particle velocity, u the fluid velocity at
the particle position and dp is the particle diameter. The Stokes drag coeffi-
cient is computed as CD = 24

Rep
(1 + 0.15Re0.687

p ) where Rep = dp|v − u|/ν is
the particle Reynolds number.

In this study both DNS and LES have been carried out. In both cases, a
pseudo-spectral method is used, based on Fourier representations for the pe-
riodic streamwise and spanwise directions and on a Chebyshev representation
for the wall-normal (nonhomogeneous) direction. A two level explicit Adams-
Bashforth scheme for the non-linear terms, and an implicit Crank-Nicolson
method for the viscous terms, were employed for time advancement. Further
details of the method can be found in [9].

In DNS the computational domain has been discretized in physical space
with 128×128×129 grid points (corresponding to 128×128 Fourier modes and
to 129 Chebyshev coefficients in the wavenumber space). This is the minimum
number of grid points required in each direction to ensure that the grid spacing
is always smaller than the smallest flow scale1 and that the limitations imposed
by the point-particle approach are satisfied.

1 In the present flow configuration, the non-dimensional Kolmogorov length scale,
η+

K , varies along the wall-normal direction from a minimum value η+
K = 1.6 at

the wall to a maximum value η+
K = 3.6 at the centerline. The grid resolution in
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LES calculations have been performed on the same computational domain.
Two computational grids have been considered: a coarse grid made of 32 ×
32× 65 nodes and a fine grid made of 64× 64× 65 nodes. For the closure of
the LES equations, the dynamic eddy-viscosity model has been used [10].

In the a priori tests the Lagrangian tracking of particles is carried out
starting from the filtered velocity fields, obtained through explicit filtering
of the DNS velocity by means of either a cut-off or a top-hat filter. Both
filters are applied in the homogeneous streamwise and spanwise directions
in the wave number space. Three different filter widths have been considered,
corresponding to a grid Coarsening Factor (CF) in each homogeneous direction
of 2, 4 and 8 with respect to DNS. In the wall-normal direction data are not
filtered, since often in LES the wall-normal resolution is DNS-like.

To calculate particle trajectories in the flow field, we have coupled a La-
grangian tracking algorithm with the DNS/LES flow solver. It discretizes Eq.
(1) using 6th-order Lagrangian polynomials to interpolate fluid velocities at
particle position; with this velocity the equations of particle motion are ad-
vanced in time using a 4th-order Runge-Kutta scheme. The timestep size
used for particle tracking was chosen to be equal to the timestep size used
for the fluid, δt+ = 0.045; the total tracking time was, for each particle set,
t+ = 1200 in the a priori tests and t+ = 1800 in the a posteriori tests. These
simulation times are not long enough to achieve a statistically steady state for
the particle concentration. At the beginning of the simulation, particles are
distributed homogeneously over the computational domain and their initial
velocity is set equal to that of the fluid at the particle initial position. Periodic
boundary conditions are imposed on particles moving outside the computa-
tional domain in the homogeneous directions, perfectly-elastic collisions at the
smooth walls were assumed when the particle center was at a distance lower
than one particle radius from the wall. For the simulations presented here,
large samples of 105 particles, characterized by different response times, were
considered. The response time is defined as τp = ρpd

2
p/18μ where μ is the

fluid dynamic viscosity: when the particle response time is made dimension-
less using wall variables, the Stokes number for each particle set is obtained
as St = τ+

p = τp/τf where τf = ν/u2
τ is the viscous timescale of the flow.

Particles having response times corresponding to St =0.2, 1, 5, 25, 125 have
been considered in this study. We remark here that, for the present channel
flow configuration, the non-dimensional value of the Kolmogorov timescale,
τ+
K , ranges from 2 wall units at the wall to 13 wall units at the channel center-

line [11]. Hence, if we rescale the particle response times using the local value
of τ+

K near the centerline, where the flow conditions are closer to homogeneous
and isotropic, we obtain Stokes numbers that vary from 10−2 to 10 and fall
in the lower range of values considered in [7].

the wall-normal direction is such that the first collocation point is at z+ = 0.05
from the wall, while in the center of the channel Δz+ = 3.7
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3 Particle Distribution in a Priori LES

We discuss here the influence of filtering on particle distribution for particles
dispersed in a priori LES flow fields, i.e. filtered DNS fields. As described
in Sec. 2, the cut-off and the top-hat filters have been used. As well known,
the first one provides a sharp separation between resolved and non-resolved
scales and can be considered the filter corresponding to a coarse spectral
simulation, in which no explicit filtering is applied. Conversely, the top-hat
filter is a smooth filter and, thus, it subtracts a significant amount of energy
from the resolved scales. For each filter, three different filter widths have
been considered. Figure 1 sketches a one-dimensional (streamwise) frequency
spectrum obtained in DNS. Since particle dynamics in the viscous sublayer is
controlled by flow structures with timescale τf around 25 and considering that
this timescale corresponds to the circulation time of the turbulence structures
in the buffer layer (5 < z+ < 30) [12], we show the energy spectrum at z+ =
25. The cut-off frequencies corresponding to each filter width are indicated
as ωCF=2

cut−off , ωCF=4
cut−off and ωCF=8

cut−off in increasing order. Also shown (dot-dashed
lines) are the estimated response frequencies which characterize each particle
set considered in the a priori tests, these frequencies being proportional to
1/τp.

Figure 2 shows the particle root mean square (rms) fluctuations of the
wall-normal velocity component obtained in the a priori tests with cut-off fil-
ter for the St = 1, the St = 5 and the St = 25 particles, respectively. The
reference values obtained injecting the particles in the DNS flow velocity fields
are also reported. All profiles were obtained averaging in time (from t+ = 450
to t+ = 1200) and space (over the homogeneous directions). It is apparent
that filtering the fluid velocity has a large impact on the turbulent velocity
fluctuations. As expected, particle velocity fluctuations are reduced in partic-
ular for the larger filter widths corresponding to coarser LES grids; for the

Fig. 1 One-dimensional (streamwise) frequency spectrum for turbulent channel flow,
computed at z+ = 25. The different cut-off frequencies, used to perform the a-priori
tests, are indicated as ωCF=2

cut-off, ωCF=4
cut-off and ωCF=8

cut-off, respectively

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1

 10

 0.001

 0.001

 0.01

 0.01

 0.1

 0.1

 ωCF=8       cut-off

 ωCF=4       cut-off

 ωCF=2       cut-off

 1

 ωmax

 10

 100

 100

E
ne

rg
y,

 E
(ω

) 
[m

2 /s
2 ]/[

ra
d/

s]

Frequency, ω [rad/s]

z+=25

St=0.2St=1St=5St=25St=125



360 M.V. Salvetti et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  20  40  60  80  100  120  140

R
M

S W

Z+

DNS
FILT. DNS: CF=2

CF=4
CF=8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  20  40  60  80  100  120  140

R
M

S W

Z+

DNS
FILT. DNS: CF=2

CF=4
CF=8

 
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  20  40  60  80  100  120  140

R
M

S W

Z+

DNS
FILT. DNS: CF=2

CF=4
CF=8

 

Fig. 2 Particle wall-normal velocity rms for a priori simulations (with cut-off filter).
Left-hand panel: St = 1 particles, central panel: St = 5 particles, right-hand panel:
St = 25 particles. CF indicates the LES grid coarsening factor with respect to the
DNS grid: CF=2 (�), CF=4 (©), CF=8 (�)

streamwise and spanwise components, not shown here for sake of brevity, the
effect is the same. This is a consequence of the well known decrease of the
flow velocity fluctuations due to filtering as felt by the particles, even if in a
different measure depending on their inertia. Note that the effect of filtering
is significant also on particles having characteristic response frequencies much
lower than those removed by the filters (e.g. the St = 25 particles). Finally,
for the cut-off filter, the underestimation of the particle fluctuations is a pure
effect of the elimination of the SGS scales, since no energy is subtracted from
the resolved ones. The results obtained with the top-hat filter (not shown
here for brevity) are qualitatively similar, although, for a given filter width,
the underestimation of the particle fluctuations is, as expected, larger for the
top-hat filter than for the cut-off one. The reduction of the wall-normal ve-
locity fluctuations near the wall for the a priori LES, shown in Fig. 2 is worth
noting because it corresponds to a reduction of particle turbophoretic drift
(namely, particle migration to the wall in turbulent boundary layers) and, in
turn, to a reduction of particle accumulation in the near-wall region [3]. This is
also shown in Fig. 3 where the near wall instantaneous particle concentration
obtained in a priori LES is compared to the DNS one for different filter widths
and different particle inertia. Concentration profiles shown here are taken at
time t+ = 1200: as mentioned, the particle tracking in a priori LES was not
carried out long enough to reach a statistically-steady particle concentration
at the wall. However, we checked many different time instants and, although
the concentration values change, the trend is always the same as that shown in
Fig. 3. It appears that, consistently with the results of Kuerten and Vreman,
[3] filtering leads to a significant underestimation of the wall particle concen-
tration, for all filter types and widths and for all particle sets considered in
this study.

Finally, in Fig. 4 the particle segregation parameter, Σp, is plotted versus
the particle Stokes number in two different regions of the channel: the chan-
nel centerline, where Σp has been computed in a fluid slab 10 wall unit thick
centered at z+ = 150, and in the near-wall region, where Σp has been com-
puted in the viscous sublayer (0 ≤ z+ ≤ 5). The segregation parameter (or
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Fig. 3 Particle concentration in a-priori tests: (a–b) St = 5 particles, (c–d) St = 25
particles. DNS (©), a-priori LES with cut-off filter (�), a-priori LES with top-hat
filter (�). Left-hand panels: CF=2, right-hand panels: CF=4

maximum deviation from randomness)[13] is calculated as (σ − σPoisson)/m,
where σ and σPoisson represent the standard deviations for the particle num-
ber density distribution and for the Poisson distribution, respectively. The
particle number density distribution is computed on a grid containing Ncell

cells of volume Ωcell covering the entire computational domain. The parame-
ter m is the mean number of particles in one cell for a random uniform particle
distribution [13]. The drawback of this method is the dependence of Σp on
the cell size. To avoid this problem, we computed the particle number density
distribution for several values of Ωcell and we kept only the largest value of
Σp [6]. First, as found in previous studies [12], a peak of Σp occurs for St � 25
and preferential concentration falls off on either side of this optimum value. As
shown for instance in Fig. 3, St = 25 particles are thus the most responsive to
the near-wall turbulent structures. When an explicit filter is applied, particle
segregation is underpredicted severely in all considered cases, especially near
the wall. Note that this underestimation is significant also for the smallest fil-
ter width, for which the reduction of particle fluctuations was relatively small
(see Fig. 2).
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Fig. 4 Particle segregation, Σp, versus particle Stokes number, St, in turbulent
channel flow: comparison between DNS (©), a-priori LES on the fine 64 × 64 × 65
grid (�) and a-priori LES on the coarse 32 × 32 × 65 grid (�). A-priori results are
relative to the cut-off filter. (a) channel centerline (145 ≤ z+ ≤ 150), (b) near-wall
region (0 ≤ z+ ≤ 5)

4 Particle Distribution in a Posteriori LES

In this Section, we will discuss the behavior of particles dispersed in LES flow
fields. As mentioned in Section 2, two different LES grids have been used. In
these a posteriori tests, different sources of errors are present in addition to the
filtering effects discussed in Section 3, viz. the errors due to (i) the SGS mod-
eling for the fluid phase, (ii) the numerical discretization of the fluid governing
equations and (iii) the interpolation in the Lagrangian particle tracking. For
the used pseudo-spectral discretization the numerical error should plausibly
be negligible. As for interpolation, a 6th-order interpolation scheme is used.
Although we did not carry out a sensitivity study, the analysis in Kuerten
and Vreman [3] indicates that the interpolation error should remain small,
even if it may introduce an additional smoothing. Thus, we believe that the
main source of difference with the a priori tests is represented by the SGS
model closing the governing equations for the fluid phase. As in the a priori
tests, no closure model is used in the equations of particle motion. In order to
asses the quality of the LES for the fluid phase, Fig. 5 compares the stream-
wise and wall-normal rms of the fluid velocity components obtained in LES
to the reference DNS values. For the more resolved LES, a good agreement
with DNS is obtained and, hence, this can be considered as a well-resolved
LES for the fluid phase. Conversely, in the coarser LES significant errors are
found in the prediction of the fluid-phase velocity fluctuations and, thus, er-
rors in the Lagrangian particle tracking are anticipated. The effect of the SGS
modeling error is clearly visible if the values obtained for the coarser grid are
compared with those of the a-priori tests in Fig. 2 for a corresponding coars-
ening factor (CF=4). Indeed, in the a posteriori LES, the introduction of the
SGS model tends to counteract the decrease of the fluid velocity fluctuations
due to filtering; in the coarser case this leads to an overestimation of the rms
of the streamwise and wall-normal velocity components. This overestimation
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Fig. 5 Fluid velocity rms: comparison between DNS (solid line), a-posteriori LES
on the fine 64 × 64 × 65 grid (�) and a-posteriori LES on the coarse 32 × 32 × 65
grid (�). (a) streamwise, (b) wall-normal velocity components

is a rather well-known behavior of coarse LES, especially for the rms of the
streamwise component. Nonetheless, it is worth remarking that in actual LES
the fluid velocity fields in which the particles are dispersed are not always
characterized by a lack of fluctuations, as it happens in the idealized context
of a priori tests. As previously mentioned, the dynamic eddy-viscosity model
[10] was used to close the LES equations for the fluid phase. We also carried
out LES simulations with the Smagorinsky model, but, as expected, the re-
sults were generally less accurate than those obtained with the dynamic SGS
model for a fixed resolution: hence they are not shown or discussed here for
sake of brevity.

In Fig. 6 the streamwise and wall-normal rms of the different particle sets
obtained in LES are compared with the reference DNS data. A good agreement
with DNS is obtained in the more resolved LES for all the considered particle
inertia, while for the coarser simulation significant discrepancies are found.
Note that in the coarse case, the rms of the wall-normal velocity component are
overestimated for all the considered particle sets, as previously observed also
for the fluid phase. In spite of the differences in the fluid and particle velocity
fluctuations observed in a priori and a posteriori tests, the underestimation
of particle concentration at the wall, already observed in the a priori tests
(see Section 3), is also found in a posteriori LES, for all considered resolutions
and particle sets. This is shown, for instance, by the instantaneous particle
concentration profiles of Fig. 7. The same is for the underprediction of the
particle preferential concentration (see Fig. 8). It is worth noting that the
errors on the quantitative prediction of both particle segregation and near-
wall accumulation are large also for the well-resolved LES, in which the level of
fluid and particle velocity fluctuations is rather well predicted. This indicates
that, in order to obtain acceptable predictions for near-wall accumulation
and particle segregation, the reintroduction of the correct level of velocity
fluctuations is not the only issue to devise a closure model for the particle
equations. Finally, in the a posteriori LES the segregation parameter, Σp, was



364 M.V. Salvetti et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  20  40  60  80  100  120  140

a)

R
M

S U

Z+

A-POSTERIORI (GRID 32x32x65)
A-POSTERIORI (GRID 64x64x65)

DNS (GRID 128x128x129)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  20  40  60  80  100  120  140

b)

R
M

S U

Z+

A-POSTERIORI (GRID 32x32x65)
A-POSTERIORI (GRID 64x64x65)

DNS (GRID 128x128x129)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  20  40  60  80  100  120  140

c)

R
M

S U

Z+

A-POSTERIORI (GRID 32x32x65)
A-POSTERIORI (GRID 64x64x65)

DNS (GRID 128x128x129)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140

d)

R
M

S W

Z+

A-POSTERIORI (GRID 32x32x65)
A-POSTERIORI (GRID 64x64x65)

DNS (GRID 128x128x129)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140

e)

R
M

S W

Z+

A-POSTERIORI (GRID 32x32x65)
A-POSTERIORI (GRID 64x64x65)

DNS (GRID 128x128x129)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140

f)

R
M

S W

Z+

A-POSTERIORI (GRID 32x32x65)
A-POSTERIORI (GRID 64x64x65)

DNS (GRID 128x128x129)

Fig. 6 Particle velocity rms: comparison between DNS (solid line), a-posteriori LES
on the fine 64×64×65 grid (�) and a-posteriori LES on the coarse 32×32×65 grid
(�): (a–c) streamwise component, (d–f) wall-normal component. Left-hand panels:
St = 1 particles, central panels: St = 5 particles, right-hand panels: St = 25 particles

Fig. 7 Particle concentration in a-posteriori tests: comparison between DNS (©),
a-posteriori LES on the fine 64×64×65 grid (�) and a-posteriori LES on the coarse
32× 32× 65 grid (�). (a) St = 5 particles, (b) St = 25 particles. The vertical solid
line in each diagram indicates the position where the particles hit the wall (Impact)

also computed for St = 125 particles (see Fig. 8). For this set of particles,
the values obtained in both LES simulations are higher than those computed
in DNS. In their a priori tests for homogeneous and isotropic turbulence,
Fede and Simonin [7] found that for particles having lower inertia than a
given threshold value the effect of filtering was to decrease the segregation
parameter, while for particles of larger inertia the segregation was conversely
increased. From our results, this scenario seems to hold also in a posteriori
LES and in near wall turbulence.
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Fig. 8 Particle segregation, Σp, versus particle Stokes number, St, in turbulent
channel flow: comparison between DNS (©), a-posteriori LES on the fine 64×64×65
grid (�) and a-posteriori LES on the coarse 32 × 32 × 65 grid (�). (a) channel
centerline (145 ≤ z+ ≤ 150), (b) near-wall region (0 ≤ z+ ≤ 5)

5 Concluding Remarks

The problem of assessing an accurate modeling of heavy particle dispersion
in Large Eddy Simulation has been investigated by means of a priori and a
posteriori LES coupled with Lagrangian particle tracking of fully developed
channel flow. Different grid resolutions and different values of the particle
response time have been considered. The accuracy in the prediction of the
particle velocity statistics, near wall accumulation and preferential segregation
have been assessed through comparison against DNS data.

Consistently with the results of Kuerten and Vreman [3] the effect of pure
filtering in a priori tests is to decrease the fluid velocity fluctuations and,
in turn, the particle velocity fluctuations, although by different amounts ac-
cording to particle inertia. This leads to a severe underestimation of particle
accumulation at the wall. Extending the analysis to particle segregation, quan-
tified by a macroscopic indicator, we found that filtering leads to a significant
underestimation of particle preferential concentration. In conclusion, as also
found in previous studies [3, 4, 5], it appears that a closure model is needed
for the particle equations. In a posteriori LES simulations, we have found
that the dynamic SGS model, used to close the problem for the fluid phase, is
able to reintroduce a correct level of fluid velocity fluctuations when a rather
fine grid (twice the DNS grid spacing in each direction) is used; the parti-
cle velocity fluctuations are also in good agreement with those obtained in
DNS. Conversely, significant discrepancies are observed with respect to the
DNS reference values when a coarser resolution (typical of LES applications)
is used. We observe that the velocity fluctuations of both phases are overesti-
mated, in contrast with the a priori tests. Despite these differences, particle
wall accumulation and local segregation are always severely underestimated
(except for the largest considered particles (St = 125)). This indicates that
the reintroduction of the correct level of fluid and particle velocity fluctua-
tions is not enough to have an accurate prediction of near-wall accumulation
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and local particle segregation. It may be argued that, since these phenom-
ena are governed by complex interactions between the particles and the flow
structures, the reitroduction of the correct amount of higher order moments of
the velocity fluctuations for both phases is probably the key point to develop
these models.
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Abstract. Large-eddy simulation of particle-laden turbulent channel flow is inves-
tigated for several subgrid models and Stokes numbers with the objective to inves-
tigate the accuracy of the subgrid models studied with respect to particle behavior.
It is shown that the wall-normal particle velocity and particle velocity fluctuations
are reduced compared to DNS, if the filtered fluid velocity calculated in the LES is
used in the particle equation of motion. Better agreement with DNS is obtained if
an inverse filtering model is incorporated into the particle equation. The results of
the approximate deconvolution model (ADM) agree better with DNS results than
results of the dynamic eddy-viscosity model and the Smagorinsky model.

Keywords: Particle-laden flow, Large-eddy simulation

1 Introduction

Particle-laden turbulent flows often occur in industry and nature. Forces ex-
erted by the fluid influence the particles. The most important of these are
drag and lift forces. If the particles are small compared to the smallest length
scales of the fluid flow, a point-particle description can be employed [1]. The
fluid is then modeled as a continuous phase, while for each particle an equa-
tion of motion is imposed. For simple geometries and low Reynolds number
all relevant length and time scales of the flow and particles can be resolved
within this approach in direct numerical simulation (DNS).

For flows at higher Stokes numbers DNS can no longer be applied. There-
fore, in the last decade, particle-laden flows have also been studied by large-
eddy simulation (LES). However, the equation of motion of a particle contains
the fluid velocity and in an LES only the resolved part of the fluid velocity is
known. If the particle relaxation time is large compared to the Kolmogorov
time scale, turbulence hardly has an effect on the particle motion and the
filtered fluid velocity can be used in the particle equation of motion without
incorporating a model for the subgrid scales [2]. Armenio et al. [3] studied
the effects of the disregard of the subgrid scales in the particle equation of
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motion by a priori and a posteriori simulation of particle-laden channel flow,
but they restricted to quantities and test cases where the effect of the subgrid
scales is small.

In [4] it has been shown that a phenomenon as turbophoresis, where par-
ticles move towards the walls of a channel by the effect of the turbulence,
cannot accurately be predicted if the subgrid scales in the fluid velocity are
disregarded in the particle equation of motion. The results depend on the
subgrid model applied, but even for an ‘optimal’ subgrid model, a substantial
difference between the DNS and LES results remains, especially for particle
relaxation times of the same order as the Kolmogorov time. It has also been
shown that results improve in case a defiltered fluid velocity [5] is used in
the particle equation of motion and an adequate subgrid model, such as the
dynamic eddy-viscosity model [6], is applied.

In the present paper several subgrid models in LES of particle-laden chan-
nel flow will be studied: Smagorinsky’s eddy-viscosity model [7], the dynamic
eddy-viscosity model [6] and the approximate deconvolution model (ADM)
[8]. Simulations will be performed with and without the defiltering procedure.
Results will be compared with DNS results on a fine grid, on which all relevant
length scales are resolved, and on a coarse LES grid, which serves as an LES
without subgrid model.

In the next section, the equations of motion and numerical methods for
particles and fluid are formulated. In Section 3 results are shown and explained
for DNS and LES, including results obtained with the defiltering procedure.
Finally, in Section 4 conclusions are stated and discussed.

2 Governing Equations and Numerical Method

In this section the equations of motion and numerical methods for fluid and
particles are described. Moreover, the defiltering procedure is elucidated.

2.1 Fluid

The flow considered in this paper is incompressible turbulent channel flow.
The Navier-Stokes equation is solved in rotation form [9]

∂u
∂t

+ ω × u +∇P = νΔu + F, (1)

where ω = ∇ × u is the vorticity, P = p
ρf

+ 1
2u

2, ν is the fluid kinematic
viscosity, p the fluctuating part of the pressure and ρf is the fluid density.
Finally, F is the driving force, chosen constant in time and space. In that
way the time-averaged Reynolds number based on the friction velocity uτ ,
Reτ = Huτ

ν can be specified, where H is half the channel height.



LES of Particle-Laden Channel Flow 369

In the DNS all relevant length- and time scales are resolved. In the stream-
wise and spanwise directions periodic boundary conditions are applied. There-
fore, the use of a pseudo-spectral method is very convenient. In the two peri-
odic directions a Fourier-Galerkin approach is applied, whereas a Chebyshev-
collocation method is adopted in the wall-normal direction.

The time integration is performed with a combination of the second-order
accurate implicit Crank-Nicolson method for the viscous and pressure terms
and a third-order accurate compact-storage explicit Runge-Kutta method for
the other terms. This makes the total method second-order accurate. The
nonlinear term is calculated by transforming from Fourier space to real space
and back with Fast Fourier Transform. In order to prevent aliasing errors
the 3/2-rule is applied in the periodic directions. The velocity field is made
divergence-free within machine accuracy following the approach proposed by
Kleiser and Schumann [10] applied to the collocation approximation [9].

The computational domain has a size 2H in the wall normal direction,
4πH in streamwise direction and 2πH in spanwise direction. In the DNS,
Reτ = 150, the number of Chebyshev collocation points equals 129 and 128
Fourier modes are used in both periodic directions. This makes the dimensions
of the channel in wall units equal to 300 in wall-normal direction, 1885 in
streamwise direction and 942 in spanwise direction. Moreover, Δx+ = 14.7,
Δz+ = 7.4 and Δy+ ranges between 0.045 at the walls and 3.7 at the center
of the channel. Throughout the paper x, y and z are used for streamwise,
wall-normal and spanwise direction, respectively. The simulation was started
from Poiseuille flow, onto which several of the least stable two- and three-
dimensional disturbances according to linear stability theory were superposed.
Due to nonlinear interactions transition to turbulence occurs and after a large
number of time steps a state of fully-developed turbulence appears.

In the LES calculations an equation for a spatially filtered fluid velocity u
is solved, where

u(x) =
∫

V

G(x;y)u(y)d3y. (2)

The integral extends over the whole domain and G(x;y) is a filter function,
e.g. the top-filter or a spectral cut-off filter. Filtering of the Navier-Stokes
equation for the fluid velocity leads to the turbulent stress tensor τi,j given
by

τij = uiuj − uiuj , (3)

which depends on the unfiltered fluid velocity and hence is unknown in an LES.
Here it is assumed that the filter operator commutates with all derivatives and
that the viscosity is constant. Otherwise, more subgrid terms appear in the
filtered Navier-Stokes equation. In a large-eddy simulation the turbulent stress
tensor is replaced by a subgrid model which is expressed in terms of the known
filtered fluid velocity.

In this work three subgrid models are considered: Smagorinsky’s eddy-
viscosity mnodel [7], the dynamic eddy-viscosity model [6] and the
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approximate deconvolution model (ADM) [8]. Moreover, for comparison pur-
poses calculations on a coarse LES grid without subgrid model are performed.
In the dynamic eddy-viscosity model

τij = −CdΔ
2|S(u)|Sij(u), (4)

where Sij is the rate of strain tensor given by

Sij(u) =
∂ui

∂xj
+

∂uj

∂xi

and |S(u)| = 1
2Sij(u)Sij(u). Furthermore Δ is the typical width of the filter.

In the present application of channel flow the filter width in each direction is
taken equal to the grid size and

Δ = (ΔxΔyΔz)
1/3

is taken as the typical filter width, which depends on the wall-normal coordi-
nate. Finally, the coefficient Cd is dynamically adjusted to the local structure
of the flow. The coefficient is determined by the introduction of a test filter
with filter width 2Δ and application of the Germano identity [6]. Following
Lilly [11], the dynamic coefficient is averaged over the homogeneous direc-
tions. As a test filter the top-hat filter is applied. In the Smagorinsky model
the coefficient Cd in (4) is replaced by a constant C2

s . In order to avoid ex-
cessive damping near the walls the Smagorinsky constant is reduced near the
walls according to:

CS = CS,0(1− exp(−y+/A+)),

where y+ is the distance to the nearest wall in wall coordinates, CS,0 = 0.1
and A+ = 26.

The basis of ADM is replacement of the unfiltered velocity in τij by an
approximate deconvolution of the filtered velocity, according to:

τij = u∗
i u

∗
j − uiuj , (5)

where

u∗
i = QNui =

N∑
k=0

(I −G)kui (6)

and G is the filter kernel. The filter and the implementation of the model are
the same as in the original paper by Stolz et al. [8]. In this work the choice of
N = 5 is made as well. In order to represent the effects of the subgrid scales
an extra regularization term is added to the Navier-Stokes equation:

∂u
∂t

+ ω∗ × u∗ +∇P = νΔu + F− χ(I −QNG)u, (7)
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where χ is dynamically adjusted in such a way that the kinetic energy con-
tained in the smallest resolved scales remains constant in time [8].

The numerical method used for the LES is the same as for the DNS. The
turbulent stress tensor is treated in the same way as the other nonlinear terms
in the Navier-Stokes equation. For the ADM de-aliasing is also performed in
the wall-normal direction. In the LES 33 Chebyshev collocation points in the
wall-normal direction are used, 32 Fourier modes in streamwise and 64 in
spanwise direction. Since the computational domain is the same as in the cor-
responding DNS, Δx+ ≈ 59 and Δz+ ≈ 15, which satisfies the requirements
of a resolved LES (see for details Piomelli and Balaras [12]). This resolution
corresponds with Δ/hDNS = 4 in the wall-normal and streamwise directions
and Δ/hDNS = 2 in the spanwise direction. The LES simulations are started
from filtered DNS fields. After some time a statistically stationary LES solu-
tion is obtained.

2.2 Particles

Particles are described by an equation of motion for each particle. In the
present work only the drag force will be considered, which has been justified
by Armenio et al. [13]. Particle-particle interaction and the effect of particles
on the fluid will be disregarded. This is justified for the low particle concen-
trations considered in this paper. Hence, the equation of motion for a particle
i with instantaneous position xi, velocity vi and mass mi reads [1]:

dvi

dt
=

u(xi, t)− vi

τp
(1 + 0.15Re0.687

p ), (8)

where u(xi, t) is the fluid velocity at the position of the particle. The particle
relaxation time τp quantifies the drag by the fluid on the particle and is
given by: τp = ρpd

2
p/(18ρfν), where dp is the particle diameter. The standard

drag correlation for particles with particle Reynolds number Rep not small
compared to 1 is applied [14].

In the low Reynolds number simulations shown here, ρp/ρf = 769.23 and
three different diameters are investigated: dp,1/H = 1.02 × 10−3, dp,2/H =
2.28× 10−3 and dp,3/H = 5.10× 10−3. This corresponds to Stokes numbers,
defined as St = τ+

p = τpu
2
τ/ν, of 1, 5 and 25. The lowest particle relaxation

time studied is lower than the smallest turbulent time scale throughout the
channel. Hence, these particles are affected by all time scales present in the
flow and disregard of the subgrid scales will influence the particle behavior
in the whole channel. The highest particle relaxation time studied is larger
than the smallest time scale of the flow, both in the DNS and in the LES.
This implies that the effect of disregarding the subgrid scales in the fluid
velocity will not influence the results much, since these scales hardly affect the
particles in this case. Particles with St = 5, on the other hand, have a particle
relaxation time equal to the channel-averaged Kolmogorov time. Especially
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around y+ = 25 the Kolmogorov time is close to the particle relaxation time,
and the effect of the disregard of the subgrid scales in the fluid velocity will
be appreciable. This is exactly the region where the turbophoretic velocity,
which leads to particle accumulation at the walls, is largest.

In the particle-laden simulations (8) is solved with the second-order accu-
rate Heun method. In order to find the fluid velocity at the particle position,
an interpolation has to be made. In this work, in the two periodic directions
fourth-order Lagrange interpolation [15], and in the wall-normal direction,
fourth-order Hermite interpolation is applied. The particle-laden simulations
start from a statistically stationary state of fully-developed turbulence with
100,000 particles of each Stokes number randomly distributed uniformly over
the channel. A particle collides elastically with the walls when it reaches one
of the walls within a distance equal to its radius. If a particle leaves the com-
putational domain through one of the periodic boundaries, its position is still
tracked and the fluid velocity at the particle position follows from periodic
continuation of the velocity field.

Solution of (8) gives accurate results in DNS, but in the particle-laden LES
simulations the fluid velocity present in (8) is unknown and simulations with
the fluid velocity replaced by the filtered fluid velocity result in substantial
deviations in statistical particle quantities compared to DNS. It is, however,
possible to decrease the subgrid errors in the LES results by retrieving part
of the subgrid contributions to the fluid velocity by inverse filtering. Inverse
filtering frequently occurs in the literature of LES [8, 5, 16], where it is used
to model the turbulent stress tensor. It has often been successful provided
that a dissipation term is added to control the extra fluctuations introduced
by defiltering. Recently, Kuerten and Vreman [4] and later Shotorban and
Maskayek [17] showed that defiltering of the fluid velocity also yields a useful
subgrid model in the particle equation of motion.

In the present work the defiltering depends on the subgrid model and is
carried out in the following way. In the dynamic eddy-viscosity model a fil-
ter only appears explicitly as test filter. Assuming that the primary filter has
the same shape, we adopt the top-hat filter with filter width Δ as primary
filter. The inversion is performed in Fourier space in the two periodic direc-
tions, whereas in the wall-normal direction the inverse is approximated with
a Taylor series up to second order in the filter width. (Note that this corre-
sponds to N = 1 in the approximate deconvolution proposed by Shotorban
and Mashayek [17], who applied a Gaussian filter.) At the walls the defiltered
velocity is set equal to zero. In the ADM simulations the deconvolved velocity
field u∗ defined in (6) is used with N = 5, just as in the filtered Navier-Stokes
equation. In simulations with the Smagorinsky subgrid model the same inverse
filter is used as in the dynamic eddy-viscosity model.
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3 Results

In this section results of the particle simulations are presented. DNS results
will be compared with LES results for the three subgrid models, both with
the filtered and with the defiltered fluid velocity adopted in (8). Also results
without subgrid model are included. A good subgrid model should yield results
better than without subgrid model. The discussion will be restricted to three
quantities: mean particle velocity, particle concentration and particle velocity
fluctuations. The latter quantity is of interest for particle dispersion, whereas
the other two are directly related to the phenomenon of turbophoresis.

3.1 Mean Wall-Normal Particle Velocity

Although the mean wall-normal fluid velocity component equals zero, the
mean wall-normal particle velocity is initially unequal to zero. This phe-
nomenon leads to turbophoresis: the accumulation of particles near the walls
and has been measured [18] and numerically predicted in DNS of turbulent
channel and pipe flow [19, 20]. This particle transport mechanism is caused
by the inhomogeneity of the turbulent velocity fluctuations [21, 22].

In order to quantify turbophoresis, in Fig. 1 the mean relative velocity is
shown for all simulations for St = 1. All results have been averaged over time
until t+ = 16, 000 and over the two homogeneous directions. A first observa-
tion from these figures is that the LES results without defiltering underpredict
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Fig. 1 Mean relative velocity at St = 1
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the maximum in the relative velocity. Moreover, it can be seen that ADM
agrees best with the DNS and that Smagorinsky is the least accurate subgrid
model with not only a reduced maximum but also a peak shifted towards
larger distances from the wall. This observation is related to the capability
of the subgrid model to predict the wall-normal fluid velocity fluctuations. A
second observation is that defiltering improves the LES results. This results
in only small differences between DNS and defiltered ADM results. A final
observation is that the results without subgrid modeling are almost as accu-
rate as the best results with subgrid model (ADM with defiltering). For the
largest Stokes number considered the differences between the LES results and
the DNS is smaller and so is the effect of defiltering.

3.2 Particle Concentration

The non-zero mean wall-normal particle velocity leads to accumulation of
particles near the walls of the channel. In Fig. 2 the concentration of particles
close to the walls is plotted as a function of time for the DNS calculations at
the three Stokes numbers. To this end the computational domain is divided in
40 equidistant strips parallel to the walls and the number of particles in the
strips closest to both walls is counted. The particle concentration is normalized
in such a way that for a uniform distribution c = 1.

The effect of turbophoresis is clearly visible. The concentration close to
the walls increases as a function of time, first fast, and later, due to the
non-uniformity of particle distribution, more slowly until a statistically sta-
tionary particle concentration is reached. The particle concentration close to
the walls increases with increasing Stokes number in the regime investigated.
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Fig. 2 Concentration of particles close to the wall as a function of time; solid: DNS;
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The stationary particle concentration is reached at t+ ≈ 16, 000 for St = 1
and St = 25 and has not been fully reached for the middle Stokes number at
t+ = 20, 000.

Also included in Fig. 2 are the a priori results until t+ ≈ 12, 000. The
particle concentration close to the walls is reduced when the fluid velocity in
(8) is filtered. The effect is largest at the middle Stokes number, St = 5, for
which the particle relaxation time is equal to the Kolmogorov time. For these
particles the effect of the turbulence on their motion is largest.

In Fig. 3 the wall concentration is plotted as a function of time for all sim-
ulations and St = 1. As for the mean relative velocity, it can be observed that
the results of the three subgrid models without defiltering underpredict the
particle accumulation and again the Smagorinksy model is the least accurate
and ADM the most accurate. ADM and the dynamic model correspond quite
well with the a priori result, which indicates that the main source of error in
these results is the disregard of the subgrid effects in the particle equation of
motion. For ADM and the dynamic model the results with defiltering show a
significant improvement. On the other hand, defiltering hardly improves the
Smagorinsky results. Marchioli and Soldati [19] explained turbophoresis by
the presence of secondary streamwise vortices close to the walls, which pre-
vent particles from being entrained into the outer flow. The absence of these
vortices in the Smagorinsky simulations, in contrast to the other two mod-
els, explains the strong reduction in turbophoresis and the negligible effect of
defiltering.

Finally, we note that the results without subgrid model are as accurate as
the results of the defiltered ADM and dynamic model and also agree quite well
with the DNS results. Again, this follows from the fact that this coarse grid
DNS yields almost the same wall-normal velocity fluctuations as the unfiltered
DNS. Similar results are obtained at the other two Stokes numbers.

3.3 Particle Velocity Fluctuations

As a final quantity the root-mean-square of the particle velocity fluctuations
is studied. In Fig. 4 the streamwise particle velocity fluctuations have been
plotted for St = 1, averaged over time from t+ = 1, 000 to t+ = 16, 000 and
over the homogeneous directions. All simulation results are included. At this
low Stokes number the particle velocity fluctuations are almost equal to the
fluid velocity fluctuations. Since the two eddy-viscosity models overpredict
the streamwise fluid velocity fluctuations, it is not surprising that the par-
ticle velocity fluctuations are also overpredicted by these models. Defiltering
only deteriorates this result. On the other hand, the defiltered ADM results
agree quite well with the DNS results. Finally, the results without subgrid
model are too low. In contrast with mean particle velocity, and hence particle
concentration, this coarse grid DNS does not predict higher moments of fluid
velocity, and hence particle velocity, accurately.
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Similar results are obtained for the streamwise particle velocity fluctua-
tions at the other Stokes numbers. In all cases, the defiltered ADM results
slightly overpredict the peak value, but agree best with the DNS results.
The peak value of the streamwise particle velocity fluctuations increases from
St = 1 to St = 5 and slightly to St = 25, whereas the velocity fluctuations
mildly decrease with increasing Stokes number near the center of the channel.

The dynamic eddy-viscosity model and ADM yield smaller wall-normal
and spanwise particle velocity fluctuations than the DNS, but defiltering im-
proves the results. The defiltered ADM results show the best agreement with
DNS. Especially at St = 5 and St = 25 the difference between defiltered ADM
and DNS is small.

4 Conclusions

In this paper LES of particle-laden turbulent channel flow is studied for several
subgrid models and at three different Stokes numbers. In order to model
the subgrid effects in the particle equation of motion the fluid velocity is
deconvolved with the use of an approximate inverse of the filter.

Of the three subgrid models investigated Smagorinsky’s model does not
yield accurate results, both for particle concentration and particle velocity
fluctuations. This model agrees less with DNS results than when no subgrid
model is used. Moreover, defiltering hardly or not improves the results. The
explanation for this finding is that Smagorinsky’s model does not predict the
structures in the fluid flow that are important for particle motion in the regime
of Stokes numbers studied.

The dynamic subgrid model performs better. Predicted particle concentra-
tions are closer to the DNS results than with Smagorinsky’s model, especially
if the fluid velocity is defiltered and particle velocity fluctuations are close to
the DNS results. The best results, however, are obtained with the approxi-
mate deconvolution model ADM. All quantities studied agree quite well with
DNS results if the fluid velocity is defiltered. From a theoretical point of view
this model has the advantageous property that the same defiltering operation
is used in the subgrid model for the fluid and in the subgrid model for the
particles. Apparently, this also results in better agreement with DNS.

The results shown in this paper clearly indicate that the proposed subgrid
model in the particle equation of motion yields a substantial improvement
provided that an adequate LES model is applied. An advantage of this subgrid
model is that it is very easy to implement, both in spectral methods and in
finite volume methods. The additional required computing time is negligible
compared to the time needed for the velocity interpolation. Moreover, the
same subgrid model can be applied in case two-way or four-way coupling
is applied and if other forces between fluid and particles, such as lift force,
added mass and pressure drag, are taken into account. For the latter two
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forces also the fluid acceleration should be defiltered and for the lift force the
fluid vorticity, but that can be done in exactly the same way.

Defiltering only models the effects of the resolved scales, in sofar they are
affected by the filtering operator. Subgrid scales, which are not represented on
the LES grid, cannot be retrieved by deconvolution. This paper shows that
in general the subgrid scales hardly affect statistical properties of particle
motion, such as mean particle concentration and mean and root-mean-square
of particle velocity. This can be explained by the fact that the typical time
scales of the subgrid scales are small compared to the particle relaxation time
in the regime investigated. At smaller Stokes numbers the small scales of
turbulence become more important, but then particles follow the flow more
closely, so that a phenomenon as turbophoresis is almost absent.
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